Pregled bibliografske jedinice broj: 849449
Employing different optimisation approaches for SMOTE parameter tuning
Employing different optimisation approaches for SMOTE parameter tuning // Proceedings of the 1st International Conference on Smart Systems and Technologies (SST) / Žagar, Drago ; Martinović, Goran ; Rimac Drlje, Snježana ; (ur.).
Osijek: Fakultet elektrotehnike, računarstva i informacijskih tehnologija Sveučilišta Josipa Jurja Strossmayera u Osijeku, 2016. str. 191-196 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 849449 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Employing different optimisation approaches for SMOTE parameter tuning
Autori
Zorić, Bruno ; Bajer, Dražen ; Martinović, Goran ;
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 1st International Conference on Smart Systems and Technologies (SST)
/ Žagar, Drago ; Martinović, Goran ; Rimac Drlje, Snježana ; - Osijek : Fakultet elektrotehnike, računarstva i informacijskih tehnologija Sveučilišta Josipa Jurja Strossmayera u Osijeku, 2016, 191-196
ISBN
978-1-5090-3718-6
Skup
International Conference on Smart Systems and Technologies (SST)
Mjesto i datum
Osijek, Hrvatska, 12.10.2016. - 14.10.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
SMOTE; bio-inspired optimisation algorithms; data imbalance; parameter tuning
Sažetak
When performing classification tasks on problems stemming from the real-world phenomena, issues requiring attention often arise due to the specific nature of the data. One common problem is the imbalance of datasets, the resolving of which is performed through several different approaches suggested in the literature. These approaches require the knowledge regarding data distribution and complexity to tune their parameters in order to better deal with the imbalance. This paper aims to give insight on employing various optimisation approaches in order to optimise parameters for the synthetic minority over-sampling technique. Several prominent optimisation approaches are evaluated on different real-world datasets in order to see whether the selection of a specific approach would produce considerably better results thus encouraging the favouring of one approach over the others.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek