Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 847628

Gauge Minkowski content and complex dimensions of relative fractal drums


Lapidus, Michel L.; Radunović, Goran; Žubrinić, Darko
Gauge Minkowski content and complex dimensions of relative fractal drums // 2016 Summer School on Fractal Geometry and Complex Dimensions
San Luis Obispo (CA), 2016. (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 847628 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Gauge Minkowski content and complex dimensions of relative fractal drums

Autori
Lapidus, Michel L. ; Radunović, Goran ; Žubrinić, Darko

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
2016 Summer School on Fractal Geometry and Complex Dimensions / - San Luis Obispo (CA), 2016

Skup
2016 Summer School on Fractal Geometry and Complex Dimensions

Mjesto i datum
San Luis Obispo (CA), Sjedinjene Američke Države, 21.06.2016. - 29.06.2016

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Mellin transform; complex dimensions of a relative fractal drum; relative fractal drum; fractal set; box dimension; fractal zeta function; distance zeta function; tube zeta function; fractal string; Minkowski content; Minkowski measurable set; gauge Minkowski content; gauge function; fractal tube formula; residue; meromorphic extension

Sažetak
Relative fractal drums or, in short RFDs, are objects which, among else, generalize the notion of a bounded subset of the Euclidean space of arbitrary dimension. We obtain some results connecting the gauge Minkowski content of RFDs (i.e., the generalization of the notion of Minkowski content to the case when the tube function ; that is, the Lebesgue measure of the tubular neighborhood of the RFD, does not satisfy a power-law asymptotics for small values of the argument), to the nature of its complex dimensions. The complex dimensions of the RFD are defined as poles (or more general singularities) of its fractal zeta function and are connected to intrinsic oscillations in the geometry of the RFD. This fact was shown recently by obtaining fractal tube formulas for a large class of RFDs ; that is, by expressing the tube function of the RFD as a sum of residues over the poles of the corresponding (modified) fractal zeta function.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
IP-2014-09-2285 - Geometrijska, ergodička i topološka analiza nisko-dimenzionalnih dinamičkih sustava (GETDYN) (Slijepčević, Siniša, HRZZ - 2014-09) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Darko Žubrinić (autor)

Avatar Url Goran Radunović (autor)

Citiraj ovu publikaciju:

Lapidus, Michel L.; Radunović, Goran; Žubrinić, Darko
Gauge Minkowski content and complex dimensions of relative fractal drums // 2016 Summer School on Fractal Geometry and Complex Dimensions
San Luis Obispo (CA), 2016. (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)
Lapidus, M., Radunović, G. & Žubrinić, D. (2016) Gauge Minkowski content and complex dimensions of relative fractal drums. U: 2016 Summer School on Fractal Geometry and Complex Dimensions.
@article{article, author = {Lapidus, Michel L. and Radunovi\'{c}, Goran and \v{Z}ubrini\'{c}, Darko}, year = {2016}, keywords = {Mellin transform, complex dimensions of a relative fractal drum, relative fractal drum, fractal set, box dimension, fractal zeta function, distance zeta function, tube zeta function, fractal string, Minkowski content, Minkowski measurable set, gauge Minkowski content, gauge function, fractal tube formula, residue, meromorphic extension}, title = {Gauge Minkowski content and complex dimensions of relative fractal drums}, keyword = {Mellin transform, complex dimensions of a relative fractal drum, relative fractal drum, fractal set, box dimension, fractal zeta function, distance zeta function, tube zeta function, fractal string, Minkowski content, Minkowski measurable set, gauge Minkowski content, gauge function, fractal tube formula, residue, meromorphic extension}, publisherplace = {San Luis Obispo (CA), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }
@article{article, author = {Lapidus, Michel L. and Radunovi\'{c}, Goran and \v{Z}ubrini\'{c}, Darko}, year = {2016}, keywords = {Mellin transform, complex dimensions of a relative fractal drum, relative fractal drum, fractal set, box dimension, fractal zeta function, distance zeta function, tube zeta function, fractal string, Minkowski content, Minkowski measurable set, gauge Minkowski content, gauge function, fractal tube formula, residue, meromorphic extension}, title = {Gauge Minkowski content and complex dimensions of relative fractal drums}, keyword = {Mellin transform, complex dimensions of a relative fractal drum, relative fractal drum, fractal set, box dimension, fractal zeta function, distance zeta function, tube zeta function, fractal string, Minkowski content, Minkowski measurable set, gauge Minkowski content, gauge function, fractal tube formula, residue, meromorphic extension}, publisherplace = {San Luis Obispo (CA), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }




Contrast
Increase Font
Decrease Font
Dyslexic Font