Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 843469

Evolutionary neuro-fuzzy system for surface roughness evaluation


Svalina, Ilija; Šimunović, Goran; Šarić, Tomislav; Lujić, Roberto
Evolutionary neuro-fuzzy system for surface roughness evaluation // Applied soft computing, 52 (2017), 593-604 doi:10.1016/j.asoc.2016.10.010 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 843469 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Evolutionary neuro-fuzzy system for surface roughness evaluation

Autori
Svalina, Ilija ; Šimunović, Goran ; Šarić, Tomislav ; Lujić, Roberto

Izvornik
Applied soft computing (1568-4946) 52 (2017); 593-604

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Surface roughness ; Cutting parameters ; Adaptive neuro-fuzzy inference system (ANFIS) ; Fuzzy inference system (FIS) ; Genetic algorithm (GA)
(Surface roughness ; CuttingSurface roughness ; Cutting parameters ; Adaptive neuro-fuzzy inference system (ANFIS) ; Fuzzy inference system (FIS) ; Genetic algorithm (GA) parameters ; Adaptive neuro-fuzzy inference system (ANFIS) ; Fuzzy inference system (FIS) ; Genetic algorithm (GA))

Sažetak
The paper presents a system that, according to the requirements referring to the product quality given in surface roughness, with minimum machining time and maximum metal removal rate, recommends optimal cutting parameters with the possibility of surface roughness control during the machining process. The suggested evolutionary neuro-fuzzy system for evaluation of surface roughness is composed of three units: surface roughness prediction by cutting parameters, multi-objective optimization of cutting parameters aimed at minimum machining time and maximum metal removal rate and control of obtained or required surface roughness by means of the features quantified from digital image of the observed machined surface. The paper outlines the idea and architecture of the system as well as the possibilities of implementation. The obtained results, illustrated by experimental research, justify the application and further development of the suggested evolutionary neuro-fuzzy system for evaluation of surface roughness within the given constraints.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Ustanove:
Strojarski fakultet, Slavonski Brod

Poveznice na cjeloviti tekst rada:

doi dx.doi.org www.sciencedirect.com

Citiraj ovu publikaciju:

Svalina, Ilija; Šimunović, Goran; Šarić, Tomislav; Lujić, Roberto
Evolutionary neuro-fuzzy system for surface roughness evaluation // Applied soft computing, 52 (2017), 593-604 doi:10.1016/j.asoc.2016.10.010 (međunarodna recenzija, članak, znanstveni)
Svalina, I., Šimunović, G., Šarić, T. & Lujić, R. (2017) Evolutionary neuro-fuzzy system for surface roughness evaluation. Applied soft computing, 52, 593-604 doi:10.1016/j.asoc.2016.10.010.
@article{article, author = {Svalina, Ilija and \v{S}imunovi\'{c}, Goran and \v{S}ari\'{c}, Tomislav and Luji\'{c}, Roberto}, year = {2017}, pages = {593-604}, DOI = {10.1016/j.asoc.2016.10.010}, keywords = {Surface roughness, Cutting parameters, Adaptive neuro-fuzzy inference system (ANFIS), Fuzzy inference system (FIS), Genetic algorithm (GA)}, journal = {Applied soft computing}, doi = {10.1016/j.asoc.2016.10.010}, volume = {52}, issn = {1568-4946}, title = {Evolutionary neuro-fuzzy system for surface roughness evaluation}, keyword = {Surface roughness, Cutting parameters, Adaptive neuro-fuzzy inference system (ANFIS), Fuzzy inference system (FIS), Genetic algorithm (GA)} }
@article{article, author = {Svalina, Ilija and \v{S}imunovi\'{c}, Goran and \v{S}ari\'{c}, Tomislav and Luji\'{c}, Roberto}, year = {2017}, pages = {593-604}, DOI = {10.1016/j.asoc.2016.10.010}, keywords = {Surface roughness, CuttingSurface roughness, Cutting parameters, Adaptive neuro-fuzzy inference system (ANFIS), Fuzzy inference system (FIS), Genetic algorithm (GA) parameters, Adaptive neuro-fuzzy inference system (ANFIS), Fuzzy inference system (FIS), Genetic algorithm (GA)}, journal = {Applied soft computing}, doi = {10.1016/j.asoc.2016.10.010}, volume = {52}, issn = {1568-4946}, title = {Evolutionary neuro-fuzzy system for surface roughness evaluation}, keyword = {Surface roughness, CuttingSurface roughness, Cutting parameters, Adaptive neuro-fuzzy inference system (ANFIS), Fuzzy inference system (FIS), Genetic algorithm (GA) parameters, Adaptive neuro-fuzzy inference system (ANFIS), Fuzzy inference system (FIS), Genetic algorithm (GA)} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Compu-Math Citation Index


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font