Pregled bibliografske jedinice broj: 841848
Denoising auto-associative measurement screening and repairing
Denoising auto-associative measurement screening and repairing // IEEE
Porto, Portugal, 2015. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 841848 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Denoising auto-associative measurement screening and repairing
Autori
Krstulović, Jakov ; Miranda, Vladimiro
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
IEEE
/ - , 2015, 1-6
ISBN
978-1-5090-0191-0
Skup
18th International Conference on Intelligent System Application to Power Systems (ISAP), 2015
Mjesto i datum
Porto, Portugal, 11.09.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Information Theoretic Learning; Gross Errors; State Estimation; Autoencoders; Neural Networks; Denoising
Sažetak
This paper offers an efficient and robust concept for a decentralized bad data processing, able to supply in real- time a power system state estimator with a repaired measurement set. Corrupted measurement vectors are funneled through a denoising auto-associative neural network in order to project the biased vector back to the data manifold learned during an offline training process. In order to improve accuracy, a maximum similarity with the solution manifold, measured with Correntropy, is searched for by a meta-heuristic. The extreme robustness and scalability of the process is demonstrated in multiple characteristic case studies.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split
Profili:
Jakov Krstulović Opara
(autor)