Pregled bibliografske jedinice broj: 839758
Automatic Update of Road Attributes by Mining GPS Tracks
Automatic Update of Road Attributes by Mining GPS Tracks // Transactions in GIS, 20 (2016), 5; 664-683 doi:10.1111/tgis.12186 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 839758 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Automatic Update of Road Attributes by Mining GPS Tracks
Autori
Van Winden, Karl ; Biljecki, Filip ; Van der Spek, Stefan
Izvornik
Transactions in GIS (1361-1682) 20
(2016), 5;
664-683
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
GPS ; road attributes ; openstreetmap ; classification
Sažetak
Despite advances in cartography, mapping is still a costly process which involves a substantial amount of manual work. This article presents a method for automatically deriving road attributes by analyzing and mining movement trajectories (e.g. GPS tracks). We have investigated the automatic extraction of eight road attributes: directionality, speed limit, number of lanes, access, average speed, congestion, importance, and geometric offset ; and we have developed a supervised classification method (decision tree) to infer them. The extraction of most of these attributes has not been investigated previously. We have implemented our method in a software prototype and we automatically update the OpenStreetMap (OSM) dataset of the Netherlands, increasing its level of completeness. The validation of the classification shows variable levels of accuracy, e.g. whether a road is a one- or a two-way road is classified with an accuracy of 99%, and the accuracy for the speed limit is 69%. When taking into account speed limits that are one step away (e.g. 60 km/h instead of the classified 50 km/h) the classification increases to 95%, which might be acceptable in some use-cases. We mitigate this with a hierarchical code list of attributes.
Izvorni jezik
Engleski
Znanstvena područja
Geodezija, Računarstvo
POVEZANOST RADA
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Social Science Citation Index (SSCI)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus