Pregled bibliografske jedinice broj: 838852
Generalizations of Sherman's inequality
Generalizations of Sherman's inequality // Periodica Mathematica Hungarica, 74 (2016), 2; 197-219 doi:10.1007/s10998-016-0154-z (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 838852 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Generalizations of Sherman's inequality
Autori
Ivelić Bradanović, Slavica ; Pečarić, Josip
Izvornik
Periodica Mathematica Hungarica (0031-5303) 74
(2016), 2;
197-219
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
majorization ; n-convexity ; Schur-convexity ; Sherman's theorem ; Taylor interpolating polynomial ; Čebyšev functional ; Grüss type inequalities ; Ostrowsky-type inequalities ; exponentially convex functions ; log-convex functions ; means
Sažetak
The concept of majorization is a powerful and useful tool which arises frequently in many different areas of research. Together with the concept of Schur-convexity it gives an important characterization of convex functions. A very important role in majorization theory plays the well known Majorization theorem which gives a relation between one-dimensional convex functions and n-dimensional Schur-convex functions. More general result was obtained by S. Sherman. In this paper, we get generalizations of these results for n-convex functions using Taylor's interpolating polynomial and Čebyšev functional. We apply Exponentiallly convex method in order to interpret our results in the form of exponentially or in the special case logarithmically convex functions. The outcome are some new classes of two-parameter Cauchy-type means.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-5435 - Nejednakosti i primjene (INEQUALITIES) (Pečarić, Josip) ( CroRIS)
Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split,
Tekstilno-tehnološki fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus