Pregled bibliografske jedinice broj: 838645
Clustering of imbalanced moodle data for early alert of student failure
Clustering of imbalanced moodle data for early alert of student failure // IEEE 14th International Symposium on Applied Machine Intelligence and Informatics (SAMI)
Herl’any, Slovakia, 2016. str. 165-170 doi:10.1109/SAMI.2016.7423001 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 838645 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Clustering of imbalanced moodle data for early
alert of student failure
Autori
Šišovic, Sabina ; Matetić, Maja ; Brkić Bakarić, Marija
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
IEEE 14th International Symposium on Applied Machine Intelligence and Informatics (SAMI)
/ - Herl’any, Slovakia, 2016, 165-170
ISBN
978-1-4673-8739-2
Skup
International Symposium on Applied Machine Intelligence and Informatics (SAMI)
Mjesto i datum
Herľany, Slovačka, 21.01.2016. - 23.01.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
educational data mining ; clustering ; e-learning ; early alert ; Moodle ; K-means
Sažetak
This paper is an attempt of applying EDM methods on Moodle data in order to detect specific behaviours within student groups with the tendency to fail the course. The research is conducted on Moodle logs gathered in the blended course Programming 1. Extracting and using crucial information on time can be a turning point for students in at-risk stage, which is what we tried to achieve in this research.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Conference Proceedings Citation Index - Science (CPCI-S)
- Scopus