Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 838246

Generalizations of Sherman's inequality by Taylor interpolating polynomial


Ivelić Bradanović, Slavica; Latif, Naveed; Pečarić, Josip
Generalizations of Sherman's inequality by Taylor interpolating polynomial // World Academy of Science, Egineering and Technology, Conference Proceedings
Rim, Italija, 2016. (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 838246 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Generalizations of Sherman's inequality by Taylor interpolating polynomial

Autori
Ivelić Bradanović, Slavica ; Latif, Naveed ; Pečarić, Josip

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
World Academy of Science, Egineering and Technology, Conference Proceedings / - , 2016

Skup
18th International Conference on Mathematical Sciences, Engineering and Applications

Mjesto i datum
Rim, Italija, 02.05.2016. - 03.05.2016

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
majorization; n-convexity; Schur-convexity; Sherman's theorem; Taylor interpolating polynomial; Čebyšev functional; Grüss type inequalities; Ostrowsky-type inequalities; exponentially convex functions; log-convex functions; means

Sažetak
Generalizations of Sherman's inequality for n-convex functions are obtained by using Taylor's interpolating polynomial. The Ostrowski and Grüss type inequalities related to these generalizations are also given. Using these generalizations, new families of exponentially convex functions are generated. The outcome are some new classes of two-parameter Cauchy-type means.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2013-11-5435 - Nejednakosti i primjene (INEQUALITIES) (Pečarić, Josip) ( CroRIS)

Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split,
Tekstilno-tehnološki fakultet, Zagreb

Profili:

Avatar Url Slavica Ivelic (autor)

Avatar Url Josip Pečarić (autor)


Citiraj ovu publikaciju:

Ivelić Bradanović, Slavica; Latif, Naveed; Pečarić, Josip
Generalizations of Sherman's inequality by Taylor interpolating polynomial // World Academy of Science, Egineering and Technology, Conference Proceedings
Rim, Italija, 2016. (predavanje, međunarodna recenzija, sažetak, znanstveni)
Ivelić Bradanović, S., Latif, N. & Pečarić, J. (2016) Generalizations of Sherman's inequality by Taylor interpolating polynomial. U: World Academy of Science, Egineering and Technology, Conference Proceedings.
@article{article, author = {Iveli\'{c} Bradanovi\'{c}, Slavica and Latif, Naveed and Pe\v{c}ari\'{c}, Josip}, year = {2016}, keywords = {majorization, n-convexity, Schur-convexity, Sherman's theorem, Taylor interpolating polynomial, \v{C}eby\v{s}ev functional, Gr\"{u}ss type inequalities, Ostrowsky-type inequalities, exponentially convex functions, log-convex functions, means}, title = {Generalizations of Sherman's inequality by Taylor interpolating polynomial}, keyword = {majorization, n-convexity, Schur-convexity, Sherman's theorem, Taylor interpolating polynomial, \v{C}eby\v{s}ev functional, Gr\"{u}ss type inequalities, Ostrowsky-type inequalities, exponentially convex functions, log-convex functions, means}, publisherplace = {Rim, Italija} }
@article{article, author = {Iveli\'{c} Bradanovi\'{c}, Slavica and Latif, Naveed and Pe\v{c}ari\'{c}, Josip}, year = {2016}, keywords = {majorization, n-convexity, Schur-convexity, Sherman's theorem, Taylor interpolating polynomial, \v{C}eby\v{s}ev functional, Gr\"{u}ss type inequalities, Ostrowsky-type inequalities, exponentially convex functions, log-convex functions, means}, title = {Generalizations of Sherman's inequality by Taylor interpolating polynomial}, keyword = {majorization, n-convexity, Schur-convexity, Sherman's theorem, Taylor interpolating polynomial, \v{C}eby\v{s}ev functional, Gr\"{u}ss type inequalities, Ostrowsky-type inequalities, exponentially convex functions, log-convex functions, means}, publisherplace = {Rim, Italija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font