Pregled bibliografske jedinice broj: 837998
On Brocard Points of Harmonic Quadrangle in I_2(R)
On Brocard Points of Harmonic Quadrangle in I_2(R) // Abstracts − 19th Scientific-Professional Colloquium on Geometry and Graphics, Starigrad- Paklenica, September 4–8, 2016 / Došlić, Tomislav ; Jurkin, Ema (ur.).
Zagreb, 2016. str. 54-55 (predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 837998 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On Brocard Points of Harmonic Quadrangle in I_2(R)
Autori
Šimić Horvath, Marija ; Jurkin, Ema ; Volenec, Vladimir ; Beban-Brkić, Jelena
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Abstracts − 19th Scientific-Professional Colloquium on Geometry and Graphics, Starigrad- Paklenica, September 4–8, 2016
/ Došlić, Tomislav ; Jurkin, Ema - Zagreb, 2016, 54-55
Skup
19th Scientific-Professional Colloquium on Geometry and Graphics
Mjesto i datum
Starigrad, Hrvatska, 04.09.2016. - 08.09.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
isotropic plane ; harmonic quadrangle ; Brocard points
Sažetak
In this talk we present several results concerning the geometry of a harmonic quadrangle in the isotropic plane I_2(R). We consider the standard cyclic quadrangle with the circumscribed circle given by y = x^2 and the vertices chosen to be A = (a, a^2), B = (b, b^2), C = (c, c^2), and D = (d, d^2), with a, b, c, d being mutually different real numbers, a < b < c < d. The harmonic quadrangle in the isotropic plane is a standard cyclic quadrangle with a special property: vertices A, B, C, and D are chosen in a way that tangents A and C at the vertices A and C, respectively, intersect in the point incident with BD, and tangents B and D at the vertices B and D, respectively, are intersected in the point incident with AC. We show that there exist a unique point P_1, so-called the first Brocard point, such that the lines P_1A, P_1B, P_1C, and P_1D form equal angles with the sides AB, BC, CD and DA, respectively. Similarly, the second Brocard point is defined as the point such that the lines P_2A, P_2B, P_2C, and P_2D form equal angles with the sides AD, DC, CB, and BA, respectively. We compare the obtained results with their Euclidean counterparts.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Geodetski fakultet, Zagreb,
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Arhitektonski fakultet, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb,
Rudarsko-geološko-naftni fakultet, Zagreb
Profili:
Vladimir Volenec
(autor)
Jelka Beban-Brkić
(autor)
Ema Jurkin
(autor)
Marija Šimić Horvath
(autor)