Pregled bibliografske jedinice broj: 836367
Hyperfibonacci sequences and polytopic numbers
Hyperfibonacci sequences and polytopic numbers // Journal of integer sequences, 19 (2016), 16.7.6; 1-13 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 836367 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Hyperfibonacci sequences and polytopic numbers
Autori
Cristea, Ligia L. ; Martinjak, Ivica ; Urbiha, Igor
Izvornik
Journal of integer sequences (1530-7638) 19
(2016), 16.7.6;
1-13
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Fibonacci sequence; hyperfibonacci sequence; hyperlucas s equence; Binet for- mula; polytopic number
Sažetak
We prove that the difference between the $n$th hyperfibonacci number of the $r$th generation and its two consecutive predecessors is the $n$th regular $(r-1)$-topic number. Using this fact, we provide an equivalent recursive definition of the hyperfibonacci sequences, and derive an extension of the Binet formula. We also prove further identities involving both hyperfibonacci and hyperlucas sequences, in full generality.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus