Pregled bibliografske jedinice broj: 83626
One-dimensional approximations of the eigenvalue problem of curved rods
One-dimensional approximations of the eigenvalue problem of curved rods // Mathematical Methods in the Applied Sciences, 24 (2001), 12; 927-948 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 83626 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
One-dimensional approximations of the eigenvalue problem of curved rods
Autori
Tambača, Josip
Izvornik
Mathematical Methods in the Applied Sciences (0170-4214) 24
(2001), 12;
927-948
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
the curved rod; linearized elasticity; spectral problem; curved rod model
Sažetak
In this work we analyse the asymptotic behaviour of eigenvalues and eigenfunctions of the linearized elasticity eigenvalue problem of curved rod-like bodies with respect to the small thickness of the rod. We show that the eigenfunctions and scaled eigenvalues converge, as tends to zero, toward eigenpairs of the eigenvalue problem associated to the one-dimensional curved rod model which is posed on the middle curve of the rod. Because of the auxiliary function appearing in the model, describing the rotation angle of the cross-sections, the limit eigenvalue problem is non-classical. This problem is transformed into a classical eigenvalue problem with eigenfunctions being inextensible displacements, but the corresponding linear operator is not a differential operator.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037004
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Josip Tambača
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews