Pregled bibliografske jedinice broj: 835513
Circular curves of the 3rd class in the quasi- hyperbolic plane obtained by projective mapping
Circular curves of the 3rd class in the quasi- hyperbolic plane obtained by projective mapping // Abstracts 19th Scienti c-Professional Colloquium on Geometry and Graphics / Došlić, T. ; Jurkin, E. (ur.).
Zagreb: Hrvatsko društvo za geometriju i grafiku, 2016. str. 66-66 (poster, domaća recenzija, sažetak, znanstveni)
CROSBI ID: 835513 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Circular curves of the 3rd class in the quasi- hyperbolic plane obtained by projective mapping
Autori
Halas, Helena
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Abstracts 19th Scienti c-Professional Colloquium on Geometry and Graphics
/ Došlić, T. ; Jurkin, E. - Zagreb : Hrvatsko društvo za geometriju i grafiku, 2016, 66-66
Skup
19th Scienti c-Professional Colloquium on Geometry and Graphics
Mjesto i datum
Starigrad, Hrvatska, 04.09.2016. - 08.09.2016
Vrsta sudjelovanja
Poster
Vrsta recenzije
Domaća recenzija
Ključne riječi
projectivity; circular curve of the 3rd class; quasi-hyperbolic plane
Sažetak
The metric in the quasi-hyperbolic is induced by an absolute figure F_QH = {;F, f_1, f_2};, consisting of two real lines f_1 and f_2 incidental with the real point F. A curve of class n is circular in the quasi-hyperbolic plane if it contains at least one absolute line. The curves of the 3rd class can be obtained by projective mapping i.e. obtained by projectively linked pencil of curves of the 2nd class and range of points. The circular curves of the 3rd class of all types, depending on their position to the absolute fi gure, can be constructed with projectively linked pencils.
Izvorni jezik
Engleski
Znanstvena područja
Matematika