Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 833958

Soft sensor models for a fractionation reformate plant using small and bootstrapped data sets


Ujević Andrijić, Željka; Cvetnić, Matija; Bolf, Nenad
Soft sensor models for a fractionation reformate plant using small and bootstrapped data sets // Brazilian journal of chemical engineering, 35 (2018), 2; 745-756 doi:10.1590/0104-6632.20180352s20150727 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 833958 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Soft sensor models for a fractionation reformate plant using small and bootstrapped data sets

Autori
Ujević Andrijić, Željka ; Cvetnić, Matija ; Bolf, Nenad

Izvornik
Brazilian journal of chemical engineering (0104-6632) 35 (2018), 2; 745-756

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
bootstrap ; neural network ; multivariable adaptive regression splines ; soft sensor ; process modeling

Sažetak
In refinery plants key process variables, like contents of process stream and various fuel properties, need to be continuously monitored using adequate on-line measuring devices. Such measuring devices are often unavailable or malfunction, and, hence, laboratory assays, which are irregular and time consuming and therefore not suitable for process control, are inevitable alternative. This research shows a comparison of different soft sensor models developed from small industrial data set with soft sensor models developed from data generated by bootstrap resampling method. Soft sensors were developed applying multiple linear regression, multivariable adaptive regression splines (MARSpline) and neural networks. The purpose of developed soft sensors is the assessing of benzene content in light reformate of fractionation reformate plant. The best results were obtained by neural network- based model developed on bootstrapped data.

Izvorni jezik
Engleski

Znanstvena područja
Kemijsko inženjerstvo



POVEZANOST RADA


Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb

Poveznice na cjeloviti tekst rada:

doi dx.doi.org www.scielo.br www.scielo.br

Citiraj ovu publikaciju:

Ujević Andrijić, Željka; Cvetnić, Matija; Bolf, Nenad
Soft sensor models for a fractionation reformate plant using small and bootstrapped data sets // Brazilian journal of chemical engineering, 35 (2018), 2; 745-756 doi:10.1590/0104-6632.20180352s20150727 (međunarodna recenzija, članak, znanstveni)
Ujević Andrijić, Ž., Cvetnić, M. & Bolf, N. (2018) Soft sensor models for a fractionation reformate plant using small and bootstrapped data sets. Brazilian journal of chemical engineering, 35 (2), 745-756 doi:10.1590/0104-6632.20180352s20150727.
@article{article, author = {Ujevi\'{c} Andriji\'{c}, \v{Z}eljka and Cvetni\'{c}, Matija and Bolf, Nenad}, year = {2018}, pages = {745-756}, DOI = {10.1590/0104-6632.20180352s20150727}, keywords = {bootstrap, neural network, multivariable adaptive regression splines, soft sensor, process modeling}, journal = {Brazilian journal of chemical engineering}, doi = {10.1590/0104-6632.20180352s20150727}, volume = {35}, number = {2}, issn = {0104-6632}, title = {Soft sensor models for a fractionation reformate plant using small and bootstrapped data sets}, keyword = {bootstrap, neural network, multivariable adaptive regression splines, soft sensor, process modeling} }
@article{article, author = {Ujevi\'{c} Andriji\'{c}, \v{Z}eljka and Cvetni\'{c}, Matija and Bolf, Nenad}, year = {2018}, pages = {745-756}, DOI = {10.1590/0104-6632.20180352s20150727}, keywords = {bootstrap, neural network, multivariable adaptive regression splines, soft sensor, process modeling}, journal = {Brazilian journal of chemical engineering}, doi = {10.1590/0104-6632.20180352s20150727}, volume = {35}, number = {2}, issn = {0104-6632}, title = {Soft sensor models for a fractionation reformate plant using small and bootstrapped data sets}, keyword = {bootstrap, neural network, multivariable adaptive regression splines, soft sensor, process modeling} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • CA Search (Chemical Abstracts)


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font