Pregled bibliografske jedinice broj: 833958
Soft sensor models for a fractionation reformate plant using small and bootstrapped data sets
Soft sensor models for a fractionation reformate plant using small and bootstrapped data sets // Brazilian journal of chemical engineering, 35 (2018), 2; 745-756 doi:10.1590/0104-6632.20180352s20150727 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 833958 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Soft sensor models for a fractionation reformate plant using small and bootstrapped data sets
Autori
Ujević Andrijić, Željka ; Cvetnić, Matija ; Bolf, Nenad
Izvornik
Brazilian journal of chemical engineering (0104-6632) 35
(2018), 2;
745-756
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
bootstrap ; neural network ; multivariable adaptive regression splines ; soft sensor ; process modeling
Sažetak
In refinery plants key process variables, like contents of process stream and various fuel properties, need to be continuously monitored using adequate on-line measuring devices. Such measuring devices are often unavailable or malfunction, and, hence, laboratory assays, which are irregular and time consuming and therefore not suitable for process control, are inevitable alternative. This research shows a comparison of different soft sensor models developed from small industrial data set with soft sensor models developed from data generated by bootstrap resampling method. Soft sensors were developed applying multiple linear regression, multivariable adaptive regression splines (MARSpline) and neural networks. The purpose of developed soft sensors is the assessing of benzene content in light reformate of fractionation reformate plant. The best results were obtained by neural network- based model developed on bootstrapped data.
Izvorni jezik
Engleski
Znanstvena područja
Kemijsko inženjerstvo
POVEZANOST RADA
Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- CA Search (Chemical Abstracts)