Pregled bibliografske jedinice broj: 833950
Prediction of dibenzothiophene conversion in the ultrasound assisted oxidative desulfurization process by regression model and neural network
Prediction of dibenzothiophene conversion in the ultrasound assisted oxidative desulfurization process by regression model and neural network // Petroleum science and technology, 34 (2016), 21; 1797-1802 doi:10.1080/10916466.2016.1243126 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 833950 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Prediction of dibenzothiophene conversion in the ultrasound assisted oxidative desulfurization process by regression model and neural network
Autori
Margeta, Dunja ; Ujević Andrijić, Željka ; Sertić- Bionda, Katica
Izvornik
Petroleum science and technology (1091-6466) 34
(2016), 21;
1797-1802
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
desulfurization ; kinetics ; linear multiple regression ; neural network ; ultrasound
Sažetak
In order to produce ultra-low sulfur diesel, ultrasound assisted oxidation desulfurization of dibenzothiophene (DBT) was carried out with acetic acid and hydrogen peroxide. Due to its complexity, ultrasound assisted oxidation process lacks a precise analytical solution. This paper explores the application of linear multiple regression and neural network for the prediction of dibenzothiophene conversion. Models were employed with respect to hydrogen peroxide dosage, temperature, reaction time, initial DBT concentration and rate constant. The most accurate results were achieved by neural network model. Developed models facilitate future research in terms of better understanding the influence of process conditions of DBT conversion.
Izvorni jezik
Engleski
Znanstvena područja
Kemijsko inženjerstvo
POVEZANOST RADA
Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus