Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 833690

Minkowski measurability criteria for compact sets and relative fractal drums in Euclidean spaces


Lapidus L., Michel; Radunović Goran; Žubrinić Darko
Minkowski measurability criteria for compact sets and relative fractal drums in Euclidean spaces // Analysis, Probability and Mathematical Physics on Fractals / Ruiz, Patricia Alonso ; Chen, Joe P ; Rogers, Luke G ; Strichartz, Robert S ; Teplyaev, Alexander (ur.).
Singapur: World Scientific Publishing, 2020. str. 21-98 doi:10.1142/11696


CROSBI ID: 833690 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Minkowski measurability criteria for compact sets and relative fractal drums in Euclidean spaces

Autori
Lapidus L., Michel ; Radunović Goran ; Žubrinić Darko

Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni

Knjiga
Analysis, Probability and Mathematical Physics on Fractals

Urednik/ci
Ruiz, Patricia Alonso ; Chen, Joe P ; Rogers, Luke G ; Strichartz, Robert S ; Teplyaev, Alexander

Izdavač
World Scientific Publishing

Grad
Singapur

Godina
2020

Raspon stranica
21-98

ISBN
978-981-121-552-0

ISSN
2382-6320

Ključne riječi
Mellin transform ; complex dimensions of a relative fractal drum ; relative fractal drum ; fractal set ; box dimension ; fractal zeta func tions ; distance zeta function ; tube zeta function ; fractal string ; Minkowski content ; Minkowski measurability criterion ; Minkowski measurable set ; residue ; meromorphic extension ; gauge-Minkowski measurability ; singularities of fractal zeta functions

Sažetak
We establish a Minkowski measurability criterion for a large class of relative fractal drums (or, in short, RFDs), in Euclidean spaces of arbitrary dimension in terms of their complex dimensions, which are defined as the poles of their associated fractal zeta functions. Relative fractal drums represent a far-reaching generalization of bounded subsets of Euclidean spaces as well as of fractal strings studied extensively by the first author and his collaborators. In fact, the Minkowski measur ability criterion established here is a generalization of the corresponding one obtained f or fractal strings by the first author and M. van Frankenhuijsen. Similarly as in the case of fractal strings, the criterion established here is formulated in terms of the locations of the principal complex dimensions associated with the relative drum under consideration. These complex dimensions are defined as poles or, more generally, singularities of the corresponding distance (or tube) zeta function. We also reflect on the notion of gauge-Minkowski measurability of RFDs and establish several results connecting it to the nature and location of the complex dimensions. (This is especially useful when the underlying scaling does not follow a classic power law.) We illustrate our results and their applications by means of a number of interesting examples.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2014-09-2285 - Geometrijska, ergodička i topološka analiza nisko-dimenzionalnih dinamičkih sustava (GETDYN) (Slijepčević, Siniša, HRZZ - 2014-09) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Darko Žubrinić (autor)

Avatar Url Goran Radunović (autor)

Poveznice na cjeloviti tekst rada:

doi arxiv.org www.worldscientific.com

Citiraj ovu publikaciju:

Lapidus L., Michel; Radunović Goran; Žubrinić Darko
Minkowski measurability criteria for compact sets and relative fractal drums in Euclidean spaces // Analysis, Probability and Mathematical Physics on Fractals / Ruiz, Patricia Alonso ; Chen, Joe P ; Rogers, Luke G ; Strichartz, Robert S ; Teplyaev, Alexander (ur.).
Singapur: World Scientific Publishing, 2020. str. 21-98 doi:10.1142/11696
Lapidus L., M., Radunović Goran & Žubrinić Darko (2020) Minkowski measurability criteria for compact sets and relative fractal drums in Euclidean spaces. U: Ruiz, P., Chen, J., Rogers, L., Strichartz, R. & Teplyaev, A. (ur.) Analysis, Probability and Mathematical Physics on Fractals. Singapur, World Scientific Publishing, str. 21-98 doi:10.1142/11696.
@inbook{inbook, author = {Lapidus L., Michel}, year = {2020}, pages = {21-98}, DOI = {10.1142/11696}, keywords = {Mellin transform, complex dimensions of a relative fractal drum, relative fractal drum, fractal set, box dimension, fractal zeta func tions, distance zeta function, tube zeta function, fractal string, Minkowski content, Minkowski measurability criterion, Minkowski measurable set, residue, meromorphic extension, gauge-Minkowski measurability, singularities of fractal zeta functions}, doi = {10.1142/11696}, isbn = {978-981-121-552-0}, issn = {2382-6320}, title = {Minkowski measurability criteria for compact sets and relative fractal drums in Euclidean spaces}, keyword = {Mellin transform, complex dimensions of a relative fractal drum, relative fractal drum, fractal set, box dimension, fractal zeta func tions, distance zeta function, tube zeta function, fractal string, Minkowski content, Minkowski measurability criterion, Minkowski measurable set, residue, meromorphic extension, gauge-Minkowski measurability, singularities of fractal zeta functions}, publisher = {World Scientific Publishing}, publisherplace = {Singapur} }
@inbook{inbook, author = {Lapidus L., Michel}, year = {2020}, pages = {21-98}, DOI = {10.1142/11696}, keywords = {Mellin transform, complex dimensions of a relative fractal drum, relative fractal drum, fractal set, box dimension, fractal zeta func tions, distance zeta function, tube zeta function, fractal string, Minkowski content, Minkowski measurability criterion, Minkowski measurable set, residue, meromorphic extension, gauge-Minkowski measurability, singularities of fractal zeta functions}, doi = {10.1142/11696}, isbn = {978-981-121-552-0}, issn = {2382-6320}, title = {Minkowski measurability criteria for compact sets and relative fractal drums in Euclidean spaces}, keyword = {Mellin transform, complex dimensions of a relative fractal drum, relative fractal drum, fractal set, box dimension, fractal zeta func tions, distance zeta function, tube zeta function, fractal string, Minkowski content, Minkowski measurability criterion, Minkowski measurable set, residue, meromorphic extension, gauge-Minkowski measurability, singularities of fractal zeta functions}, publisher = {World Scientific Publishing}, publisherplace = {Singapur} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font