Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 832701

Tattoo Detection for Soft Biometric De-identification Based on Convolutional Neural Networks


Hrkać, Tomislav; Brkić, Karla; Kalafatić, Zoran
Tattoo Detection for Soft Biometric De-identification Based on Convolutional Neural Networks // 1st OAGM-ARW Joint Workshop - Vision Meets Robotics / Kurt Niel, Peter M. Roth, Markus Vincze (ur.).
Wels, Austrija: OeAGM/AAPR, 2016. str. 131-138 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 832701 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Tattoo Detection for Soft Biometric De-identification Based on Convolutional Neural Networks

Autori
Hrkać, Tomislav ; Brkić, Karla ; Kalafatić, Zoran

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
1st OAGM-ARW Joint Workshop - Vision Meets Robotics / Kurt Niel, Peter M. Roth, Markus Vincze - : OeAGM/AAPR, 2016, 131-138

Skup
1st OeAGM-ARW Joint Workshop

Mjesto i datum
Wels, Austrija, 11.05.2016. - 13.05.2016

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
tattoo detection; convolutional neural networks; de-identification

Sažetak
Nowadays, video surveillance is ubiquitous, posing a potential privacy risk to law-abiding individu- als. Consequently, there is an increased interest in developing methods for de-identification, i.e. re- moving personally identifying features from publicly available or stored data. While most of related work focuses on de-identifying hard biometric identifiers such as faces, we address the problem of de-identification of soft biometric identifiers – tattoos. We propose a method for tattoo detection in unconstrained images, intended to serve as a first step for soft biometric de-identification. The method, based on a deep convolutional neural network, discriminates between tattoo and non- tattoo image patches, and it can be used to produce a mask of tattoo candidate regions. We contribute a dataset of manually labeled tattoos. Experimental evaluation on the contributed dataset indicates competitive performance of our method and proves its usefulness in a de-identification scenario.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
HRZZ1544

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Tomislav Hrkać (autor)

Avatar Url Karla Brkić (autor)

Avatar Url Zoran Kalafatić (autor)


Citiraj ovu publikaciju:

Hrkać, Tomislav; Brkić, Karla; Kalafatić, Zoran
Tattoo Detection for Soft Biometric De-identification Based on Convolutional Neural Networks // 1st OAGM-ARW Joint Workshop - Vision Meets Robotics / Kurt Niel, Peter M. Roth, Markus Vincze (ur.).
Wels, Austrija: OeAGM/AAPR, 2016. str. 131-138 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Hrkać, T., Brkić, K. & Kalafatić, Z. (2016) Tattoo Detection for Soft Biometric De-identification Based on Convolutional Neural Networks. U: Kurt Niel, Peter M. Roth, Markus Vincze (ur.)1st OAGM-ARW Joint Workshop - Vision Meets Robotics.
@article{article, author = {Hrka\'{c}, Tomislav and Brki\'{c}, Karla and Kalafati\'{c}, Zoran}, year = {2016}, pages = {131-138}, keywords = {tattoo detection, convolutional neural networks, de-identification}, title = {Tattoo Detection for Soft Biometric De-identification Based on Convolutional Neural Networks}, keyword = {tattoo detection, convolutional neural networks, de-identification}, publisher = {OeAGM/AAPR}, publisherplace = {Wels, Austrija} }
@article{article, author = {Hrka\'{c}, Tomislav and Brki\'{c}, Karla and Kalafati\'{c}, Zoran}, year = {2016}, pages = {131-138}, keywords = {tattoo detection, convolutional neural networks, de-identification}, title = {Tattoo Detection for Soft Biometric De-identification Based on Convolutional Neural Networks}, keyword = {tattoo detection, convolutional neural networks, de-identification}, publisher = {OeAGM/AAPR}, publisherplace = {Wels, Austrija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font