Pregled bibliografske jedinice broj: 832697
Deep Learning Architectures for Tattoo Detection and De- identification
Deep Learning Architectures for Tattoo Detection and De- identification // Sensing, Processing and Learning for Intelligent Machines (SPLINE), 2016 First International Workshop on
Aaalborg: Institute of Electrical and Electronics Engineers (IEEE), 2016. str. 45-49 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 832697 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Deep Learning Architectures for Tattoo Detection and De- identification
Autori
Hrkać, Tomislav ; Brkić, Karla ; Ribarić, Slobodan ; Marčetić, Darijan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Sensing, Processing and Learning for Intelligent Machines (SPLINE), 2016 First International Workshop on
/ - Aaalborg : Institute of Electrical and Electronics Engineers (IEEE), 2016, 45-49
ISBN
978-1-4673-8917-4
Skup
First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)
Mjesto i datum
Aalborg, Danska, 06.07.2016. - 08.07.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
deep learning; tattoo detection; tattoo de-identification
Sažetak
The widespread use of video recording devices to obtain recordings of people in various scenarios makes the problem of privacy protection increasingly important. Consequently, there is an increased interest in developing methods for de-identification, i.e. removing personally identifying features from publicly available or stored data. Most of related work focuses on de-identifying hard biometric identifiers such as faces. We address the problem of detection and de-identification of soft biometric identifiers - tattoos. We use a deep convolutional neural network to discriminate between tattoo and non-tattoo image patches, group the patches into blobs, and propose the de-identifying method based on replacing the color of pixels inside the tattoo blob area with a values obtained by interpolation of the surrounding skin color. Experimental evaluation on the contributed dataset indicates the proposed method can be useful in a soft biometric de-identification scenario.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Tomislav Hrkać
(autor)
Karla Brkić
(autor)
Darijan Marčetić
(autor)
Slobodan Ribarić
(autor)