Pregled bibliografske jedinice broj: 83077
On Hadamard (35,17,8) Designs
On Hadamard (35,17,8) Designs // International Congress of Mathematicians, Beijing 2002, August 20-28, Abstracts of Short Communications and Poster Sessions
Peking: Higher Education Press, 2002. str. 296-296 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 83077 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On Hadamard (35,17,8) Designs
Autori
Crnković, Dean ; Held, Dieter ; Rukavina, Sanja
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
International Congress of Mathematicians, Beijing 2002, August 20-28, Abstracts of Short Communications and Poster Sessions
/ - Peking : Higher Education Press, 2002, 296-296
Skup
International Congress of Mathematicians
Mjesto i datum
Peking, Kina, 20.08.2002. - 28.08.2002
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Hadamard design; symmetric design; automorphism group
Sažetak
We have classified all symmetric Hadamard (35, 17, 8)-designs admitting automorphism groups of order 17, 7, 5, or cyclic automorphism groups of order 6. Also, we have constructed all Hadamard (35, 17, 8)-designs with an automorphism of order 3 having 8 fixed points. The full automorphism groups of the designs obtained have been studied. One of the groups is isomorphic to the symmetric group $S_8$. Each of the constructed designs gives rise to a series of Hadamard designs with parameters $(n_{k+2}, n_{k+1}, n_k)$, where $n_{k+1}=2*n_k+1$, $(k=1, 2, 3, ...)$, and $n_1=17$. If G is an automorphism group of a constructed Hadamard (35, 17, 8) design, then G is also an automorphism group of each member of corresponding series of designs and their residual and derived designs.
Izvorni jezik
Engleski
Znanstvena područja
Matematika