Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 829790

Classification of cardiac arrhythmias based on alphabet entropy of heart rate variability time series


Jović, Alan; Jović, Franjo
Classification of cardiac arrhythmias based on alphabet entropy of heart rate variability time series // Biomedical Signal Processing and Control, 31 (2017), 217-230 doi:10.1016/j.bspc.2016.08.010 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 829790 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Classification of cardiac arrhythmias based on alphabet entropy of heart rate variability time series

Autori
Jović, Alan ; Jović, Franjo

Izvornik
Biomedical Signal Processing and Control (1746-8094) 31 (2017); 217-230

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
nonlinear dynamics ; entropy ; classification ; feature selection ; cardiac arrhythmia

Sažetak
Background: Symbolic dynamics' methods provide a description of time series variability that allows inference of new predictive markers. Classification of disorders using symbolic dynamics is accomplished through the use of nonlinear entropies, measured upon encoded series. Method: This work applies a recently developed symbolic dynamics method, alphabet entropy (AlphEn) to heart rate variability (HRV) analysis in order to improve automatic classification of cardiac arrhythmias. Experiments are conducted on PhysioNet MIT-BIH Arrhythmia Database. The approach is experimentally compared with other HRV linear and nonlinear feature combinations established in literature. AlphEn is experimentally compared with other common nonlinear entropies: Shannon's entropy, approximate entropy, sample entropy, etc. Feature selection using symmetrical uncertainty is used for discovering relevant AlphEn features and random forest algorithm is used for arrhythmia classification. Results: The best classification result obtained for six heart rhythms on 20 s segments is achieved for AlphEn no-change threshold θ = 100 ms. AlphEn features improved mean sensitivity of other feature combinations by 2% on average, with the best results achieved: SENS: 91.2%, SPEC: 97.1%, AUC: 99.0%. AlphEn may be used efficiently by adding top 10 ranking features, obtained with symmetrical uncertainty, to other established combinations. AlphEn provides the best incremental result to linear feature combination with respect to the inspected entropies. Conclusions: AlphEn improves the results of established HRV feature combinations on the problem of automatic cardiac arrhythmia classification. The method enables the extraction of a number of potentially significant, domain-oriented features. It can be used as an accurate first-hand screening for arrhythmia problems.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Kliničke medicinske znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Profili:

Avatar Url Alan Jović (autor)

Avatar Url Franjo Jović (autor)

Citiraj ovu publikaciju:

Jović, Alan; Jović, Franjo
Classification of cardiac arrhythmias based on alphabet entropy of heart rate variability time series // Biomedical Signal Processing and Control, 31 (2017), 217-230 doi:10.1016/j.bspc.2016.08.010 (međunarodna recenzija, članak, znanstveni)
Jović, A. & Jović, F. (2017) Classification of cardiac arrhythmias based on alphabet entropy of heart rate variability time series. Biomedical Signal Processing and Control, 31, 217-230 doi:10.1016/j.bspc.2016.08.010.
@article{article, author = {Jovi\'{c}, Alan and Jovi\'{c}, Franjo}, year = {2017}, pages = {217-230}, DOI = {10.1016/j.bspc.2016.08.010}, keywords = {nonlinear dynamics, entropy, classification, feature selection, cardiac arrhythmia}, journal = {Biomedical Signal Processing and Control}, doi = {10.1016/j.bspc.2016.08.010}, volume = {31}, issn = {1746-8094}, title = {Classification of cardiac arrhythmias based on alphabet entropy of heart rate variability time series}, keyword = {nonlinear dynamics, entropy, classification, feature selection, cardiac arrhythmia} }
@article{article, author = {Jovi\'{c}, Alan and Jovi\'{c}, Franjo}, year = {2017}, pages = {217-230}, DOI = {10.1016/j.bspc.2016.08.010}, keywords = {nonlinear dynamics, entropy, classification, feature selection, cardiac arrhythmia}, journal = {Biomedical Signal Processing and Control}, doi = {10.1016/j.bspc.2016.08.010}, volume = {31}, issn = {1746-8094}, title = {Classification of cardiac arrhythmias based on alphabet entropy of heart rate variability time series}, keyword = {nonlinear dynamics, entropy, classification, feature selection, cardiac arrhythmia} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font