Pregled bibliografske jedinice broj: 829790
Classification of cardiac arrhythmias based on alphabet entropy of heart rate variability time series
Classification of cardiac arrhythmias based on alphabet entropy of heart rate variability time series // Biomedical Signal Processing and Control, 31 (2017), 217-230 doi:10.1016/j.bspc.2016.08.010 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 829790 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Classification of cardiac arrhythmias based on alphabet entropy of heart rate variability time series
Autori
Jović, Alan ; Jović, Franjo
Izvornik
Biomedical Signal Processing and Control (1746-8094) 31
(2017);
217-230
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
nonlinear dynamics ; entropy ; classification ; feature selection ; cardiac arrhythmia
Sažetak
Background: Symbolic dynamics' methods provide a description of time series variability that allows inference of new predictive markers. Classification of disorders using symbolic dynamics is accomplished through the use of nonlinear entropies, measured upon encoded series. Method: This work applies a recently developed symbolic dynamics method, alphabet entropy (AlphEn) to heart rate variability (HRV) analysis in order to improve automatic classification of cardiac arrhythmias. Experiments are conducted on PhysioNet MIT-BIH Arrhythmia Database. The approach is experimentally compared with other HRV linear and nonlinear feature combinations established in literature. AlphEn is experimentally compared with other common nonlinear entropies: Shannon's entropy, approximate entropy, sample entropy, etc. Feature selection using symmetrical uncertainty is used for discovering relevant AlphEn features and random forest algorithm is used for arrhythmia classification. Results: The best classification result obtained for six heart rhythms on 20 s segments is achieved for AlphEn no-change threshold θ = 100 ms. AlphEn features improved mean sensitivity of other feature combinations by 2% on average, with the best results achieved: SENS: 91.2%, SPEC: 97.1%, AUC: 99.0%. AlphEn may be used efficiently by adding top 10 ranking features, obtained with symmetrical uncertainty, to other established combinations. AlphEn provides the best incremental result to linear feature combination with respect to the inspected entropies. Conclusions: AlphEn improves the results of established HRV feature combinations on the problem of automatic cardiac arrhythmia classification. The method enables the extraction of a number of potentially significant, domain-oriented features. It can be used as an accurate first-hand screening for arrhythmia problems.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Kliničke medicinske znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus