Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 827774

Cardiac Arrhythmia Detection Using DCT Based Compressive Sensing and Random Forest Algorithm


Marasović, Tea; Papić, Vladan
Cardiac Arrhythmia Detection Using DCT Based Compressive Sensing and Random Forest Algorithm // Proceedings of the 1st International Multidisciplinary Conference on Computers and Energy Science (SpliTech 2016)
Split, Hrvatska, 2016. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 827774 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Cardiac Arrhythmia Detection Using DCT Based Compressive Sensing and Random Forest Algorithm

Autori
Marasović, Tea ; Papić, Vladan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 1st International Multidisciplinary Conference on Computers and Energy Science (SpliTech 2016) / - , 2016

ISBN
978-953-290-060-6

Skup
International Multidisciplinary Conference on Computers and Energy Science (SpliTech 2016)

Mjesto i datum
Split, Hrvatska, 13.07.2016. - 15.07.2016

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
ECG; cardiac arrhythmia; discrete cosine transform; compressive sensing; random projection; random forest

Sažetak
The discrimination of ECG signals is of crucial importance in clinical diagnoses of cardiac diseases. Manual analysis of ECG signals is very complex and time consuming task due to their composite nature. This paper proposes a novel scheme for reliable automatic classification of ECG signals into normal and three different abnormal (arrhythmia affected) categories. The feature extraction is based on an amalgamation of discrete cosine transform and random projection for dimensionality reduction. Furthermore, the classification is performed using random forest algorithm. The performance of the proposed scheme is evaluated on the restricted subset of ECG recordings from MIT-BIH arrhythmia database. In the experiments, a near perfect recognition accuracies of 99:33% and 99%, depending on the definition of projection matrix, are achieved with only 50 random projected coefficients ; i.e. after considerable dimensionality reduction of the input ECG signal.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Profili:

Avatar Url Vladan Papić (autor)

Avatar Url Tea Marasović (autor)


Citiraj ovu publikaciju:

Marasović, Tea; Papić, Vladan
Cardiac Arrhythmia Detection Using DCT Based Compressive Sensing and Random Forest Algorithm // Proceedings of the 1st International Multidisciplinary Conference on Computers and Energy Science (SpliTech 2016)
Split, Hrvatska, 2016. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Marasović, T. & Papić, V. (2016) Cardiac Arrhythmia Detection Using DCT Based Compressive Sensing and Random Forest Algorithm. U: Proceedings of the 1st International Multidisciplinary Conference on Computers and Energy Science (SpliTech 2016).
@article{article, author = {Marasovi\'{c}, Tea and Papi\'{c}, Vladan}, year = {2016}, keywords = {ECG, cardiac arrhythmia, discrete cosine transform, compressive sensing, random projection, random forest}, isbn = {978-953-290-060-6}, title = {Cardiac Arrhythmia Detection Using DCT Based Compressive Sensing and Random Forest Algorithm}, keyword = {ECG, cardiac arrhythmia, discrete cosine transform, compressive sensing, random projection, random forest}, publisherplace = {Split, Hrvatska} }
@article{article, author = {Marasovi\'{c}, Tea and Papi\'{c}, Vladan}, year = {2016}, keywords = {ECG, cardiac arrhythmia, discrete cosine transform, compressive sensing, random projection, random forest}, isbn = {978-953-290-060-6}, title = {Cardiac Arrhythmia Detection Using DCT Based Compressive Sensing and Random Forest Algorithm}, keyword = {ECG, cardiac arrhythmia, discrete cosine transform, compressive sensing, random projection, random forest}, publisherplace = {Split, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font