Pregled bibliografske jedinice broj: 827277
Analiza podataka vremenskih nizova s nejednolikom raspodjelom u visoko distribuiranim i nepouzdanim mrežama
Analiza podataka vremenskih nizova s nejednolikom raspodjelom u visoko distribuiranim i nepouzdanim mrežama, 2016., diplomski rad, diplomski, Fakultet elektrotehnike, strojarstva i brodogradnje, Split
CROSBI ID: 827277 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Analiza podataka vremenskih nizova s nejednolikom raspodjelom u visoko distribuiranim i nepouzdanim mrežama
(Analysis of unevenly spaced time series data in highly distributed and unreliable networks)
Autori
Lujić, Ivan
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski
Fakultet
Fakultet elektrotehnike, strojarstva i brodogradnje
Mjesto
Split
Datum
14.07
Godina
2016
Stranica
66
Mentor
Čelar, Stipo ; Brandić, Ivona
Ključne riječi
Podaci vremenskih nizova; Vremenski nizovi s nejednolikom vremenskom raspodjelom; Predviđanje podataka vremenskih nizova; Mjere točnosti predviđanja
(Time series data; Unevenly spaced time series; Time series forecasting; Forecast error measures)
Sažetak
Missing values may appear in collected time series for a number of reasons such as: network failure, power failures and other unexpected conditions during data transfer or their collection what creates a challenge when trying to analyze such data. Accordingly, there is need for reconstructing these missing values and gaps, i.e. to do transformation from unevenly spaced into evenly spaced time series, but based on the best fitted forecast method. Several types of time series are generally distinguished, including stationary time series (e.g. white noise) and different patterns in non-stationary time series such as: trend, seasonal and a combination of them. By selecting a forecasting method that has the best accuracy (the smallest error) for adequate and recognized type of time series, an automated recursive predicting function is presented. An important factor in determining the best forecasting method involves the different forecast accuracy measures.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split
Profili:
Stipo Čelar
(mentor)