Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 827072

There are infinitely many rational Diophantine sextuples


Dujella, Andrej; Kazalicki, Matija; Mikić, Miljen; Szikszai, Marton
There are infinitely many rational Diophantine sextuples // 5th International Conference on Uniform Distribution Theory / Gueth, Krisztián ; Herendi, Tamás ; Németh, László ; Szalay, László (ur.).
Šopron: Walter de Gruyter, 2017. str. 10-10 doi:10.1515/udt-2017-0010 (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 827072 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
There are infinitely many rational Diophantine sextuples

Autori
Dujella, Andrej ; Kazalicki, Matija ; Mikić, Miljen ; Szikszai, Marton

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
5th International Conference on Uniform Distribution Theory / Gueth, Krisztián ; Herendi, Tamás ; Németh, László ; Szalay, László - Šopron : Walter de Gruyter, 2017, 10-10

Skup
5th International Conference on Uniform Distribution Theory (UDT 2016)

Mjesto i datum
Sopron, Mađarska, 05.07.2016. - 08.07.2016

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Diophantine sextuples ; elliptic curves

Sažetak
A rational Diophantine m-tuple is a set of $m$ nonzero rationals such that the product of any two of them increased by 1 is a perfect square. The first rational Diophantine quadruple was found by Diophantus, while Euler proved that there are infinitely many rational Diophantine quintuples. In 1999, Gibbs found the first example of a rational Diophantine sextuple. In this talk, we describe construction of infinitely many rational Diophantine sextuples. The construction involves elliptic curves, induced by rational Diophantine triples, with torsion group Z/2Z x Z/6Z.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2013-11-6422 - Diofantove m-torke, eliptičke krivulje, Thueove i indeksne jednadžbe (DIOPHANTINE) (Dujella, Andrej, HRZZ - 2013-11) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Matija Kazalicki (autor)

Avatar Url Andrej Dujella (autor)

Poveznice na cjeloviti tekst rada:

doi sciendo.com

Citiraj ovu publikaciju:

Dujella, Andrej; Kazalicki, Matija; Mikić, Miljen; Szikszai, Marton
There are infinitely many rational Diophantine sextuples // 5th International Conference on Uniform Distribution Theory / Gueth, Krisztián ; Herendi, Tamás ; Németh, László ; Szalay, László (ur.).
Šopron: Walter de Gruyter, 2017. str. 10-10 doi:10.1515/udt-2017-0010 (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)
Dujella, A., Kazalicki, M., Mikić, M. & Szikszai, M. (2017) There are infinitely many rational Diophantine sextuples. U: Gueth, K., Herendi, T., Németh, L. & Szalay, L. (ur.)5th International Conference on Uniform Distribution Theory doi:10.1515/udt-2017-0010.
@article{article, author = {Dujella, Andrej and Kazalicki, Matija and Miki\'{c}, Miljen and Szikszai, Marton}, year = {2017}, pages = {10-10}, DOI = {10.1515/udt-2017-0010}, keywords = {Diophantine sextuples, elliptic curves}, doi = {10.1515/udt-2017-0010}, title = {There are infinitely many rational Diophantine sextuples}, keyword = {Diophantine sextuples, elliptic curves}, publisher = {Walter de Gruyter}, publisherplace = {Sopron, Ma\djarska} }
@article{article, author = {Dujella, Andrej and Kazalicki, Matija and Miki\'{c}, Miljen and Szikszai, Marton}, year = {2017}, pages = {10-10}, DOI = {10.1515/udt-2017-0010}, keywords = {Diophantine sextuples, elliptic curves}, doi = {10.1515/udt-2017-0010}, title = {There are infinitely many rational Diophantine sextuples}, keyword = {Diophantine sextuples, elliptic curves}, publisher = {Walter de Gruyter}, publisherplace = {Sopron, Ma\djarska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font