Pregled bibliografske jedinice broj: 827072
There are infinitely many rational Diophantine sextuples
There are infinitely many rational Diophantine sextuples // 5th International Conference on Uniform Distribution Theory / Gueth, Krisztián ; Herendi, Tamás ; Németh, László ; Szalay, László (ur.).
Šopron: Walter de Gruyter, 2017. str. 10-10 doi:10.1515/udt-2017-0010 (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 827072 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
There are infinitely many rational Diophantine sextuples
Autori
Dujella, Andrej ; Kazalicki, Matija ; Mikić, Miljen ; Szikszai, Marton
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
5th International Conference on Uniform Distribution Theory
/ Gueth, Krisztián ; Herendi, Tamás ; Németh, László ; Szalay, László - Šopron : Walter de Gruyter, 2017, 10-10
Skup
5th International Conference on Uniform Distribution Theory (UDT 2016)
Mjesto i datum
Sopron, Mađarska, 05.07.2016. - 08.07.2016
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Diophantine sextuples ; elliptic curves
Sažetak
A rational Diophantine m-tuple is a set of $m$ nonzero rationals such that the product of any two of them increased by 1 is a perfect square. The first rational Diophantine quadruple was found by Diophantus, while Euler proved that there are infinitely many rational Diophantine quintuples. In 1999, Gibbs found the first example of a rational Diophantine sextuple. In this talk, we describe construction of infinitely many rational Diophantine sextuples. The construction involves elliptic curves, induced by rational Diophantine triples, with torsion group Z/2Z x Z/6Z.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-6422 - Diofantove m-torke, eliptičke krivulje, Thueove i indeksne jednadžbe (DIOPHANTINE) (Dujella, Andrej, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb