Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 826905

Surface roughness assessing based on digital image features


Simunovic, Goran; Svalina, Ilija; Simunovic, Katica; Saric, Tomislav; Havrlisan, Sara; Vukelic, Đorđe.
Surface roughness assessing based on digital image features // Advances ifn production engineering & practices, 11 (2016), 2; 93-104 doi:10.14743/apem2016.2.212 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 826905 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Surface roughness assessing based on digital image features

Autori
Simunovic, Goran ; Svalina, Ilija ; Simunovic, Katica ; Saric, Tomislav ; Havrlisan, Sara ; Vukelic, Đorđe.

Izvornik
Advances ifn production engineering & practices (1854-6250) 11 (2016), 2; 93-104

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
surface roughness ; face milling ; digital image ; adaptive neuro‐fuzzy inference system

Sažetak
The paper gives an account of the machined surface roughness investigation based on the features of a digital image taken subsequent to the technological operation of milling of aluminium alloy Al6060. The data used for investigation were obtained by mixed‐level factorial design with two replicates. Input variables (factors) are represented by the face milling basic machining parameters: spindle speed (at five levels: 2000 ; 3500 ; 5000 ; 6500 ; 8000 rev/min, respectively), feed per tooth (at six levels: 0.025 ; 0.1 ; 0.175 ; 0.25 ; 0.325 ; 0.4 mm/tooth, respectively) and depth of cut (at two levels: 1 ; 2 mm, respectively). Output variable or response is the most frequently used surface roughness parameter – arithmetic average of the roughness profile, Ra. Digital image of the machined surface is provided for every test sample. Based on experimental design and obtained results of roughness measuring, a base has been created of input data (features) extracted from digital images of the samples' machined surfaces. This base was later used for generating the fuzzy inference system for prediction of the surface roughness using the adaptive neuro‐fuzzy inference system (ANFIS). Assessing error, i.e. comparison of the assessed value Ra provided by the system with real Ra values, is expressed with the normalized root mean square error (NRMSE) and it is 0.0698 (6.98 %).

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Ustanove:
Strojarski fakultet, Slavonski Brod

Poveznice na cjeloviti tekst rada:

doi apem-journal.org

Citiraj ovu publikaciju:

Simunovic, Goran; Svalina, Ilija; Simunovic, Katica; Saric, Tomislav; Havrlisan, Sara; Vukelic, Đorđe.
Surface roughness assessing based on digital image features // Advances ifn production engineering & practices, 11 (2016), 2; 93-104 doi:10.14743/apem2016.2.212 (međunarodna recenzija, članak, znanstveni)
Simunovic, G., Svalina, I., Simunovic, K., Saric, T., Havrlisan, S. & Vukelic, Đ. (2016) Surface roughness assessing based on digital image features. Advances ifn production engineering & practices, 11 (2), 93-104 doi:10.14743/apem2016.2.212.
@article{article, author = {Simunovic, Goran and Svalina, Ilija and Simunovic, Katica and Saric, Tomislav and Havrlisan, Sara and Vukelic, \DJor\dje.}, year = {2016}, pages = {93-104}, DOI = {10.14743/apem2016.2.212}, keywords = {surface roughness, face milling, digital image, adaptive neuro‐fuzzy inference system}, journal = {Advances ifn production engineering and practices}, doi = {10.14743/apem2016.2.212}, volume = {11}, number = {2}, issn = {1854-6250}, title = {Surface roughness assessing based on digital image features}, keyword = {surface roughness, face milling, digital image, adaptive neuro‐fuzzy inference system} }
@article{article, author = {Simunovic, Goran and Svalina, Ilija and Simunovic, Katica and Saric, Tomislav and Havrlisan, Sara and Vukelic, \DJor\dje.}, year = {2016}, pages = {93-104}, DOI = {10.14743/apem2016.2.212}, keywords = {surface roughness, face milling, digital image, adaptive neuro‐fuzzy inference system}, journal = {Advances ifn production engineering and practices}, doi = {10.14743/apem2016.2.212}, volume = {11}, number = {2}, issn = {1854-6250}, title = {Surface roughness assessing based on digital image features}, keyword = {surface roughness, face milling, digital image, adaptive neuro‐fuzzy inference system} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font