Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 826795

Segmentation of the foveal microvasculature using deep learning networks


Prentašić, Pavle; Heisler, Morgan; Mammo, Zaid; Lee, Sieun; Merkur, Andrew; Navajas, Eduardo; Faisal Beg, Mirza; Šarunić, Marinko; Lončarić , Sven
Segmentation of the foveal microvasculature using deep learning networks // Journal of biomedical optics, 21 (2016), 7; 075008-1 doi:10.1117/1.JBO.21.7.075008 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 826795 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Segmentation of the foveal microvasculature using deep learning networks

Autori
Prentašić, Pavle ; Heisler, Morgan ; Mammo, Zaid ; Lee, Sieun ; Merkur, Andrew ; Navajas, Eduardo ; Faisal Beg, Mirza ; Šarunić, Marinko ; Lončarić , Sven

Izvornik
Journal of biomedical optics (1083-3668) 21 (2016), 7; 075008-1

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
image segmentation ; neural networks ; optical coherence tomography angiography ; ophthalmology.

Sažetak
Accurate segmentation of the retinal microvasculature is a critical step in the quantitative analysis of the retinal circulation, which can be an important marker in evaluating the severity of retinal diseases. As manual segmentation remains the gold standard for segmentation of optical coherence tomography angiography (OCT-A) images, we present a method for automating the segmentation of OCT-A images using deep neural networks (DNNs). Eighty OCT-A images of the foveal region in 12 eyes from 6 healthy volunteers were acquired using a prototype OCT-A system and subsequently manually segmented. The automated segmentation of the blood vessels in the OCT-A images was then performed by classifying each pixel into vessel or nonvessel class using deep convolutional neural networks. When the automated results were compared against the manual segmentation results, a maximum mean accuracy of 0.83 was obtained. When the automated results were compared with inter and intrarater accuracies, the automated results were shown to be comparable to the human raters suggesting that segmentation using DNNs is comparable to a second manual rater. As manually segmenting the retinal microvasculature is a tedious task, having a reliable automated output such as automated segmentation by DNNs, is an important step in creating an automated output.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Sven Lončarić (autor)

Avatar Url Pavle Prentašić (autor)

Poveznice na cjeloviti tekst rada:

doi biomedicaloptics.spiedigitallibrary.org

Citiraj ovu publikaciju:

Prentašić, Pavle; Heisler, Morgan; Mammo, Zaid; Lee, Sieun; Merkur, Andrew; Navajas, Eduardo; Faisal Beg, Mirza; Šarunić, Marinko; Lončarić , Sven
Segmentation of the foveal microvasculature using deep learning networks // Journal of biomedical optics, 21 (2016), 7; 075008-1 doi:10.1117/1.JBO.21.7.075008 (međunarodna recenzija, članak, znanstveni)
Prentašić, P., Heisler, M., Mammo, Z., Lee, S., Merkur, A., Navajas, E., Faisal Beg, M., Šarunić, M. & Lončarić , S. (2016) Segmentation of the foveal microvasculature using deep learning networks. Journal of biomedical optics, 21 (7), 075008-1 doi:10.1117/1.JBO.21.7.075008.
@article{article, author = {Prenta\v{s}i\'{c}, Pavle and Heisler, Morgan and Mammo, Zaid and Lee, Sieun and Merkur, Andrew and Navajas, Eduardo and Faisal Beg, Mirza and \v{S}aruni\'{c}, Marinko and Lon\v{c}ari\'{c}, Sven}, year = {2016}, pages = {075008-1-075008-7}, DOI = {10.1117/1.JBO.21.7.075008}, keywords = {image segmentation, neural networks, optical coherence tomography angiography, ophthalmology.}, journal = {Journal of biomedical optics}, doi = {10.1117/1.JBO.21.7.075008}, volume = {21}, number = {7}, issn = {1083-3668}, title = {Segmentation of the foveal microvasculature using deep learning networks}, keyword = {image segmentation, neural networks, optical coherence tomography angiography, ophthalmology.} }
@article{article, author = {Prenta\v{s}i\'{c}, Pavle and Heisler, Morgan and Mammo, Zaid and Lee, Sieun and Merkur, Andrew and Navajas, Eduardo and Faisal Beg, Mirza and \v{S}aruni\'{c}, Marinko and Lon\v{c}ari\'{c}, Sven}, year = {2016}, pages = {075008-1-075008-7}, DOI = {10.1117/1.JBO.21.7.075008}, keywords = {image segmentation, neural networks, optical coherence tomography angiography, ophthalmology.}, journal = {Journal of biomedical optics}, doi = {10.1117/1.JBO.21.7.075008}, volume = {21}, number = {7}, issn = {1083-3668}, title = {Segmentation of the foveal microvasculature using deep learning networks}, keyword = {image segmentation, neural networks, optical coherence tomography angiography, ophthalmology.} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Uključenost u ostale bibliografske baze podataka::


  • INSPEC
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font