Pregled bibliografske jedinice broj: 826524
Sensitivity analysis of wind load estimation method based on elliptic Fourier descriptors
Sensitivity analysis of wind load estimation method based on elliptic Fourier descriptors // Proceedings of the 3rd International Conference on Maritime Technology and Engineering (MARTECH 2016) / Guedes Soares, C. ; Santos, T.A. (ur.).
Chenai: CRC Press ; A.A. Balkema Publishers ; Taylor & Francis, 2016. str. 151-160 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 826524 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Sensitivity analysis of wind load estimation method based on elliptic Fourier descriptors
Autori
Prpić-Oršić, Jasna ; Valčić, Marko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 3rd International Conference on Maritime Technology and Engineering (MARTECH 2016)
/ Guedes Soares, C. ; Santos, T.A. - Chenai : CRC Press ; A.A. Balkema Publishers ; Taylor & Francis, 2016, 151-160
ISBN
978-1-138-03000-8
Skup
MARTECH 2016 - 3rd International Conference on Maritime Technology and Engineering
Mjesto i datum
Lisabon, Portugal, 04.07.2016. - 06.07.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
wind loads; elliptic Fourier descriptors; sensitivity analysis
Sažetak
This paper presents a new approach of wind loads estimation. The method used in the paper is based on Elliptic Fourier Descriptors (EFD) which are used for ship frontal and lateral closed contour representation. This approach takes into account all aspects of the variability of the above-water frontal and lateral ship profile. It is very suitable for assessing wind loads on marine structures wherever we have a wind load database for a group of similar vessels. In this way the cheaper and faster calculation can bridge the gap between ship shapes for which calculations or experiments have already been made. The Generalized Regression Neural Network (GRNN) is trained by elliptic Fourier descriptors of closed contours and Blendermann wind load data derived from wind tunnel tests for a group of ships. The trained neural network is used for the wind coefficient estimation with respect to the variability of lateral container vessel contours. The results are compared with available experimental data and investigation how small changes in the contour geometry affect the overall estimation is performed.
Izvorni jezik
Engleski
Znanstvena područja
Brodogradnja, Tehnologija prometa i transport
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-8722 - Ekološki pristup projektiranju broda i optimalnom planiranju rute (GASDORP) (Prpić-Oršić, Jasna, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka,
Pomorski fakultet, Rijeka