Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 826498

The propagation principle for fractional H- measures


Erceg, Marko; Ivec, Ivan
The propagation principle for fractional H- measures // 6th Croatian mathematical congress - book of abstracts / Hanzer, Marcela et al. (ur.).
Zagreb, 2016. str. 24-25 (predavanje, domaća recenzija, sažetak, znanstveni)


CROSBI ID: 826498 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
The propagation principle for fractional H- measures

Autori
Erceg, Marko ; Ivec, Ivan

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
6th Croatian mathematical congress - book of abstracts / Hanzer, Marcela et al. - Zagreb, 2016, 24-25

Skup
6th Croatian mathematical congress

Mjesto i datum
Zagreb, Hrvatska, 14.06.2016. - 17.06.2016

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Domaća recenzija

Ključne riječi
H-measures ; propagation principle ; fractional derivatives

Sažetak
Classical H-measures introduced by Tartar (1990) and independently by Gérard (1991) are mostly suited for hyperbolic equations while parabolic equations fit in the framework of the parabolic H-measures developed by Antonić and Lazar (2007- 2013). Although the majority of important equations of mathematical physics can be treated by one of the mentioned variants (having ratios 1:1 or 1:2 between the order of time and spatial derivatives), recently the study of differential relations with fractional derivatives enhanced requiring the extension of the theory to arbitrary ratios. The first generalisation was pointed by Mitrović and Ivec (2011) and applied on fractional conservation laws. The propagation principle is the basis for more challenging applications of both classical and parabolic H- measures, and the proof relies on the suitable variant of the Second commutation lemma. We extend the Second commutation lemma and prove the propagation principle for fractional H- measures, giving the unification of the known results for classical and parabolic H-measures. At the end, we illustrate possible applications on one example.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2013-11-9780 - Metode slabih convergencija i primjene (WeConMApp) (Antonić, Nenad, HRZZ - 2013-11) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb,
Metalurški fakultet, Sisak

Profili:

Avatar Url Ivan Ivec (autor)

Avatar Url Marko Erceg (autor)

Citiraj ovu publikaciju:

Erceg, Marko; Ivec, Ivan
The propagation principle for fractional H- measures // 6th Croatian mathematical congress - book of abstracts / Hanzer, Marcela et al. (ur.).
Zagreb, 2016. str. 24-25 (predavanje, domaća recenzija, sažetak, znanstveni)
Erceg, M. & Ivec, I. (2016) The propagation principle for fractional H- measures. U: Hanzer, M. (ur.)6th Croatian mathematical congress - book of abstracts.
@article{article, author = {Erceg, Marko and Ivec, Ivan}, editor = {Hanzer, M.}, year = {2016}, pages = {24-25}, keywords = {H-measures, propagation principle, fractional derivatives}, title = {The propagation principle for fractional H- measures}, keyword = {H-measures, propagation principle, fractional derivatives}, publisherplace = {Zagreb, Hrvatska} }
@article{article, author = {Erceg, Marko and Ivec, Ivan}, editor = {Hanzer, M.}, year = {2016}, pages = {24-25}, keywords = {H-measures, propagation principle, fractional derivatives}, title = {The propagation principle for fractional H- measures}, keyword = {H-measures, propagation principle, fractional derivatives}, publisherplace = {Zagreb, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font