Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 825577

A graphical model approach to systematically missing data in meta-analysis of observational studies


Kovačić, Jelena; Varnai, Veda Marija
A graphical model approach to systematically missing data in meta-analysis of observational studies // Statistics in medicine, 35 (2016), 24; 4443-4458 doi:10.1002/sim.7010 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 825577 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A graphical model approach to systematically missing data in meta-analysis of observational studies

Autori
Kovačić, Jelena ; Varnai, Veda Marija

Izvornik
Statistics in medicine (0277-6715) 35 (2016), 24; 4443-4458

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
meta-analysis ; unmeasured confounding ; graphical models

Sažetak
When studies in meta-analysis include different sets of confounders, simple analyses can cause a bias (omitting confounders that are missing in certain studies) or precision loss (omitting studies with incomplete confounders, i.e. a complete-case meta-analysis). To overcome these types of issues, a previous study proposed modelling the high correlation between partially and fully adjusted regression coefficient estimates in a bivariate meta-analysis. When multiple differently adjusted regression coefficient estimates are available, we propose exploiting such correlations in a graphical model. Compared with a previously suggested bivariate meta-analysis method, such a graphical model approach is likely to reduce the number of parameters in complex missing data settings by omitting the direct relationships between some of the estimates. We propose a structure-learning rule whose justification relies on the missingness pattern being monotone. This rule was tested using epidemiological data from a multi-centre survey. In the analysis of risk factors for early retirement, the method showed a smaller difference from a complete data odds ratio and greater precision than a commonly used complete-case meta-analysis. Three real-world applications with monotone missing patterns are provided, namely, the association between (1) the fibrinogen level and coronary heart disease, (2) the intima media thickness and vascular risk and (3) allergic asthma and depressive episodes. The proposed method allows for the inclusion of published summary data, which makes it particularly suitable for applications involving both microdata and summary data.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Javno zdravstvo i zdravstvena zaštita



POVEZANOST RADA


Ustanove:
Institut za medicinska istraživanja i medicinu rada, Zagreb

Profili:

Avatar Url Veda Marija Varnai (autor)

Avatar Url Jelena Kovačić (autor)

Poveznice na cjeloviti tekst rada:

doi onlinelibrary.wiley.com

Citiraj ovu publikaciju:

Kovačić, Jelena; Varnai, Veda Marija
A graphical model approach to systematically missing data in meta-analysis of observational studies // Statistics in medicine, 35 (2016), 24; 4443-4458 doi:10.1002/sim.7010 (međunarodna recenzija, članak, znanstveni)
Kovačić, J. & Varnai, V. (2016) A graphical model approach to systematically missing data in meta-analysis of observational studies. Statistics in medicine, 35 (24), 4443-4458 doi:10.1002/sim.7010.
@article{article, author = {Kova\v{c}i\'{c}, Jelena and Varnai, Veda Marija}, year = {2016}, pages = {4443-4458}, DOI = {10.1002/sim.7010}, keywords = {meta-analysis, unmeasured confounding, graphical models}, journal = {Statistics in medicine}, doi = {10.1002/sim.7010}, volume = {35}, number = {24}, issn = {0277-6715}, title = {A graphical model approach to systematically missing data in meta-analysis of observational studies}, keyword = {meta-analysis, unmeasured confounding, graphical models} }
@article{article, author = {Kova\v{c}i\'{c}, Jelena and Varnai, Veda Marija}, year = {2016}, pages = {4443-4458}, DOI = {10.1002/sim.7010}, keywords = {meta-analysis, unmeasured confounding, graphical models}, journal = {Statistics in medicine}, doi = {10.1002/sim.7010}, volume = {35}, number = {24}, issn = {0277-6715}, title = {A graphical model approach to systematically missing data in meta-analysis of observational studies}, keyword = {meta-analysis, unmeasured confounding, graphical models} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font