Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 823017

Measuring performance of optimization algorithms in evolutionary computation


Ivkovic, Nikola; Jakobovic, Domagoj; Golub, Marin
Measuring performance of optimization algorithms in evolutionary computation // International journal of machine learning and computing, 6 (2016), 3; 167-171 doi:10.18178/ijmlc.2016.6.3.593 (podatak o recenziji nije dostupan, članak, znanstveni)


CROSBI ID: 823017 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Measuring performance of optimization algorithms in evolutionary computation

Autori
Ivkovic, Nikola ; Jakobovic, Domagoj ; Golub, Marin

Izvornik
International journal of machine learning and computing (2010-3700) 6 (2016), 3; 167-171

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
algorithmic performance ; experimental evaluation ; metaheuristics ; quantile

Sažetak
Reporting the results of optimization algorithms in evolutionary computation is a challenging task with many potential pitfalls. The source of problems is their stochastic nature and inability to guarantee an optimal solution in polynomial time. One of the basic questions that is often not addressed concerns the method of summarizing the entire distribution of solutions into a single value. Although the mean value is used by default for that purpose, the best solution obtained is also occasionally used in addition to or instead of it. Based on our analysis of different possibilities for measuring the performance of stochastic optimization algorithms presented in this paper we propose quantiles as the standard measure of performance. Quantiles can be naturally interpreted for the designated purpose. Besides, they are defined even when the arithmetic mean is not, and are applicable in cases of multiple executions of an algorithm. Our study also showed that, on the contrary to many other fields, in the case of stochastic optimization algorithms the greater variability in measured data can be considered as an advantage.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Fakultet organizacije i informatike, Varaždin,
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Nikola Ivković (autor)

Avatar Url Domagoj Jakobović (autor)

Avatar Url Marin Golub (autor)

Citiraj ovu publikaciju:

Ivkovic, Nikola; Jakobovic, Domagoj; Golub, Marin
Measuring performance of optimization algorithms in evolutionary computation // International journal of machine learning and computing, 6 (2016), 3; 167-171 doi:10.18178/ijmlc.2016.6.3.593 (podatak o recenziji nije dostupan, članak, znanstveni)
Ivkovic, N., Jakobovic, D. & Golub, M. (2016) Measuring performance of optimization algorithms in evolutionary computation. International journal of machine learning and computing, 6 (3), 167-171 doi:10.18178/ijmlc.2016.6.3.593.
@article{article, author = {Ivkovic, Nikola and Jakobovic, Domagoj and Golub, Marin}, year = {2016}, pages = {167-171}, DOI = {10.18178/ijmlc.2016.6.3.593}, keywords = {algorithmic performance, experimental evaluation, metaheuristics, quantile}, journal = {International journal of machine learning and computing}, doi = {10.18178/ijmlc.2016.6.3.593}, volume = {6}, number = {3}, issn = {2010-3700}, title = {Measuring performance of optimization algorithms in evolutionary computation}, keyword = {algorithmic performance, experimental evaluation, metaheuristics, quantile} }
@article{article, author = {Ivkovic, Nikola and Jakobovic, Domagoj and Golub, Marin}, year = {2016}, pages = {167-171}, DOI = {10.18178/ijmlc.2016.6.3.593}, keywords = {algorithmic performance, experimental evaluation, metaheuristics, quantile}, journal = {International journal of machine learning and computing}, doi = {10.18178/ijmlc.2016.6.3.593}, volume = {6}, number = {3}, issn = {2010-3700}, title = {Measuring performance of optimization algorithms in evolutionary computation}, keyword = {algorithmic performance, experimental evaluation, metaheuristics, quantile} }

Uključenost u ostale bibliografske baze podataka::


  • INSPEC


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font