Pregled bibliografske jedinice broj: 822706
On the existence of Diophantine quintuples
On the existence of Diophantine quintuples // 14th Meeting of the Canadian Number Theory Association
Calgary, Kanada, 2016. str. 24-24 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 822706 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the existence of Diophantine quintuples
Autori
Filipin, Alan ; Cipu, Mihai ; Fujita, Yasutsugu
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
14th Meeting of the Canadian Number Theory Association
/ - , 2016, 24-24
Skup
14th Meeting of the Canadian Number Theory Association
Mjesto i datum
Calgary, Kanada, 20.06.2016. - 24.06.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Diophnatine m-tuples; hypergeometric method; linear forms in logarithms
Sažetak
A set of m positive integers is called a Diophantine m-tuple if the product of any two of its distinct elements increased by 1 is a prefect square. One of the interesting question is how large those sets can be. There is a folklore conjecture that there does not exist a Diophantine quintuple. In 2004 Dujella proved that there does not exist a Diophantine sextuple and that there are only finitely many quintuples. Recently, there is lot of work from various authors who have improved that result, but the conjecture still remains open. In this talk we give a proof that there does not exist a Diophantine quintuple {;a, b, c, d, e}; such that a < b < c < d < e if a and b are relatively near to each other. Moreover, there is a stronger version of that conjecture, that every Diophantine triple can be extended to a quadruple with a larger element in the unique way. Precisely, if {;a, b, c, d}; is Diophantine quadruple such that a < b < c < d, then d=d_{;+};=a+b+c+2(abc+rst), where r, s and t are positive integers satisfying r^2=ab+1, s^2=ac+1 and t^2=bc+1. In this talk we will also give the proof of that for some families of Diophantine triples.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-6422 - Diofantove m-torke, eliptičke krivulje, Thueove i indeksne jednadžbe (DIOPHANTINE) (Dujella, Andrej, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Građevinski fakultet, Zagreb
Profili:
Alan Filipin
(autor)