Pregled bibliografske jedinice broj: 822259
On rational Diophantine sextuples
On rational Diophantine sextuples // 6th Croatian Mathematical Congress
Zagreb, 2016. str. 23-23 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 822259 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On rational Diophantine sextuples
Autori
Dujella, Andrej ; Kazalicki, Matija ; Mikić, Miljen ; Szikszai, Marton
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
6th Croatian Mathematical Congress
/ - Zagreb, 2016, 23-23
Skup
6th Croatian Mathematical Congress
Mjesto i datum
Zagreb, Hrvatska, 14.07.2016. - 17.07.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
rational Diophantine sextuples ; eliptic curves
Sažetak
A rational Diophantine m-tuple is a set of m nonzero rationals such that the product of any two of them increased by 1 is a perfect square. The first rational Diophantine quadruple was found by Diophantus, while Euler proved that there are infinitely many rational Diophantine quintuplets. In 1999, Gibbs found the first example of a rational Diophantine sextuple. In this talk, we describe the construction of infinitely many rational Diophantine sextuples. The construction involves elliptic curves, induced by rational Diophantine triples, with torsion group Z/2Z×Z/6Z.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-6422 - Diofantove m-torke, eliptičke krivulje, Thueove i indeksne jednadžbe (DIOPHANTINE) (Dujella, Andrej, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb