Pregled bibliografske jedinice broj: 821564
On the extendibility of Diophantine pairs
On the extendibility of Diophantine pairs // 6th Croatian Mathematical Congress
Zagreb, Hrvatska, 2016. (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 821564 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the extendibility of Diophantine pairs
Autori
Filipin, Alan ; Fujita, Yasutsugu ; Togbe, Alain
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
6th Croatian Mathematical Congress
/ - , 2016
Skup
6th Croatian Mathematical Congress
Mjesto i datum
Zagreb, Hrvatska, 14.07.2016. - 17.07.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Diophantine m-tuples
Sažetak
A set of m positive integers is called a Diophantine m-tuple if the product of any two of its distinct elements increased by 1 is a prefect square. There is a folklore conjecture that there does not exist a Diophantine quintuple. Moreover, there is a stronger version of that conjecture, that every Diophantine triple can be extended to a quadruple with a larger element in the unique way. Precisely, if {; ; a, b, c, d}; ; is Diophantine quadruple such that a < b < c < d, then d=d_{; ; +}; ; =a+b+c+2(abc+rst), where r, s and t are positive integers satisfying r^2=ab+1, s^2=ac+1 and t^2=bc+1. Let {; ; a, b, c, d}; ; such that a < b < c < d be a Diophantine quadruple. In this talk we give an upper bound for minimal c such that d ≠ d_{; ; +}; ; . It helps us to prove the strong version of the conjecture for various families of Diophantine triples. As corollary it furthermore implies the non-extendibitily of parametric families of Diophantine pairs to a quintuple.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-6422 - Diofantove m-torke, eliptičke krivulje, Thueove i indeksne jednadžbe (DIOPHANTINE) (Dujella, Andrej, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Građevinski fakultet, Zagreb
Profili:
Alan Filipin
(autor)