Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 821079

Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling


Strušnik, Dušan; Marčić, Milan; Golob, Marjan; Hribernik, Aleš; Živić, Marija; Avsec, Jurij
Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling // Applied energy, 173 (2016), 386-405 doi:10.1016/j.apenergy.2016.04.047 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 821079 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling

Autori
Strušnik, Dušan ; Marčić, Milan ; Golob, Marjan ; Hribernik, Aleš ; Živić, Marija ; Avsec, Jurij

Izvornik
Applied energy (0306-2619) 173 (2016); 386-405

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Energy efficiency ; steam ejector

Sažetak
This paper compares the vapour ejector and electric vacuum pump power consumptions with machine learning algorithms by using real process data and presents some novelty guideline for the selection of an appropriate condenser vacuum pump system of a steam turbine power plant. The machine learning algorithms are made by using the supervised machine learning methods such as artificial neural network model and local linear neuro-fuzzy models. The proposed non-linear models are designed by using a wide range of real process operation data sets from the CHP system in the thermal power plant. The novelty guideline for the selection of an appropriate condenser vacuum pumps system is expressed in the comparative analysis of the energy consumption and use of specific energy capable of work. Furthermore, the novelty is expressed in the economic efficiency analysis of the investment taking into consideration the operating costs of the vacuum pump systems and may serve as basic guidelines for the selection of an appropriate condenser vacuum pump system of a steam turbine

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Ustanove:
Strojarski fakultet, Slavonski Brod

Profili:

Avatar Url Marija Živić (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Strušnik, Dušan; Marčić, Milan; Golob, Marjan; Hribernik, Aleš; Živić, Marija; Avsec, Jurij
Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling // Applied energy, 173 (2016), 386-405 doi:10.1016/j.apenergy.2016.04.047 (međunarodna recenzija, članak, znanstveni)
Strušnik, D., Marčić, M., Golob, M., Hribernik, A., Živić, M. & Avsec, J. (2016) Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling. Applied energy, 173, 386-405 doi:10.1016/j.apenergy.2016.04.047.
@article{article, author = {Stru\v{s}nik, Du\v{s}an and Mar\v{c}i\'{c}, Milan and Golob, Marjan and Hribernik, Ale\v{s} and \v{Z}ivi\'{c}, Marija and Avsec, Jurij}, year = {2016}, pages = {386-405}, DOI = {10.1016/j.apenergy.2016.04.047}, keywords = {Energy efficiency, steam ejector}, journal = {Applied energy}, doi = {10.1016/j.apenergy.2016.04.047}, volume = {173}, issn = {0306-2619}, title = {Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling}, keyword = {Energy efficiency, steam ejector} }
@article{article, author = {Stru\v{s}nik, Du\v{s}an and Mar\v{c}i\'{c}, Milan and Golob, Marjan and Hribernik, Ale\v{s} and \v{Z}ivi\'{c}, Marija and Avsec, Jurij}, year = {2016}, pages = {386-405}, DOI = {10.1016/j.apenergy.2016.04.047}, keywords = {Energy efficiency, steam ejector}, journal = {Applied energy}, doi = {10.1016/j.apenergy.2016.04.047}, volume = {173}, issn = {0306-2619}, title = {Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling}, keyword = {Energy efficiency, steam ejector} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font