Pregled bibliografske jedinice broj: 820859
Censored Levy and Related Processes
Censored Levy and Related Processes, 2016., doktorska disertacija, Prirodoslovno-matematički fakultet - Matematički odsjek, Zagreb
CROSBI ID: 820859 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Censored Levy and Related Processes
Autori
Wagner, Vanja
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, doktorska disertacija
Fakultet
Prirodoslovno-matematički fakultet - Matematički odsjek
Mjesto
Zagreb
Datum
25.05
Godina
2016
Stranica
103
Mentor
Vondraček, Zoran
Ključne riječi
Levy process ; censored process ; Harnack inequality ; boundary Harnack inequality ; Dirichlet form ; trace theorem
Sažetak
We examine three equivalent constructions of a censored rotationally symmetric Leve process on an open set $D$ - via the corresponding Dirichlet form, through the Feynman-Kac transform of the Levy process killed outside of the set $D$ and from the same killed process by the Ikeda-Nagasawa-Watanabe piecing together procedure. For a complete Bernstein function $\phi$ satisfying condition (H): $$ a_1 \lambda^{; ; ; ; \delta_1}; ; ; ; \le \frac{; ; ; ; \phi(\lambda r)}; ; ; ; {; ; ; ; \phi(r)}; ; ; ; \le a_2\lambda^{; ; ; ; \delta_2}; ; ; ; , lambda\ge 1, r>0, $$ for some constants $a_1, a_2 > 0$ and $\delta_1, \delta_2\in (0 ; 1)$, we prove the trace theorem for the Besov space of generalized smoothness $H^{; ; ; ; \phi(|\cdot|^2), 1}; ; ; ; on $n$-sets. We analyze the behavior of the corresponding censored subordinate Brownian motion near the boundary $\partial D$ and determine conditions under which the process approaches the boundary of the set $D$ in nite time. Under a weaker condition (H1), i.e. (H) for $\lambda, r\ge 1$, on the Laplace exponent $\phi$ of the subordinator we prove the 3G inequality for Green functions of the subordinate Brownian motion on $\kappa$-fat open sets. Using this result we obtain the scale invariant Harnack inequality for the corresponding censored process. Finally, we consider a subordinate Brownian motion such that (H) holds and 0 is regular for itself. We establish a connection between this process and two related processes - censored process on the positive half-line and the absolute value of the subordinate Brownian motion killed at zero. We show that the corresponding Green functions on nite intervals away from 0 are comparable. Furthermore, we prove the Harnack inequality and the boundary Harnack principle for the absolute value of the subordinate Brownian motion killed at zero.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-3526 - Stohastičke metode u analitičkim i primijenjenim problemima (SMAAP) (Vondraček, Zoran, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb