Pregled bibliografske jedinice broj: 81748
Machine learning based analysis of biochemical and morphologic parameters in patients with dialysis related amyloidosis
Machine learning based analysis of biochemical and morphologic parameters in patients with dialysis related amyloidosis // Croatica Chemica Acta, 75 (2002), 4; 935-944 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 81748 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Machine learning based analysis of biochemical and morphologic parameters in patients with dialysis related amyloidosis
Autori
Barišić, Igor ; Wilhelm, Vladimir ; Štambuk, Nikola ; Karaman, Ksenija ; Janković, Stipan ; Konjevoda, Paško ; Pokrić, Biserka
Izvornik
Croatica Chemica Acta (0011-1643) 75
(2002), 4;
935-944
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
dialysis; amyloidosis; biochemistry; morphologic parameters; shoulder; knee; symptoms; glycation end-products; chronic-hemodialysis; sonographic findings; arthropathy; ultrasound; diagnosis; shoulder
Sažetak
Dialysis related amyloidosis is the accumulation and deposition of beta(2)-microglobulin derived fibrils in bones and joints, due to insufficient elimination during therapy or slowly progressing renal failure. The aim of this study was to analyse biochemical, morphologic and anamnestic parameters that may be relevant for the onset and development of dialysis related amyloidosis. In addition to standard statistical procedures, we also applied the machine-learning based methods of data mining to quantify the risk factors for asymptomatic patients. Extraction of: risk factors for the onset of the dialysis related amyloidosis syndrome could enable the clinician to predict the symptoms and consider medical procedures to prevent the onset of the disease. The C4.5 machine learning algorithm extracted a simple and highly accurate tree for discrimination of asymptomatic and symptomatic patients suffering from dialysis related amyloidosis. It remains an open question if our findings may contribute to the problem of accurately predicting the onset of dialysis related arthropathy in the asymptomatic patient group.
Izvorni jezik
Engleski
Znanstvena područja
Temeljne medicinske znanosti
POVEZANOST RADA
Projekti:
0098097
Ustanove:
Institut "Ruđer Bošković", Zagreb
Profili:
Nikola Štambuk
(autor)
Paško Konjevoda
(autor)
Stipan Janković
(autor)
Igor Barišić
(autor)
Biserka Pokrić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Chemical Abstracts