Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 816457

Nonlinear Extension of Asymmetric GARCH Model within Neural Network Framework


Arnerić, Josip; Poklepović, Tea
Nonlinear Extension of Asymmetric GARCH Model within Neural Network Framework // Computer Science & Information Technology (CS & IT), 6 (2016), 6; 101-111 doi:10.5121/csit.2016.60609 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 816457 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Nonlinear Extension of Asymmetric GARCH Model within Neural Network Framework

Autori
Arnerić, Josip ; Poklepović, Tea

Izvornik
Computer Science & Information Technology (CS & IT) (2231-5403) 6 (2016), 6; 101-111

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
conditional volatility ; GARCH model ; GJR model ; Neural Networks ; emerging markets

Sažetak
The importance of volatility for all market participants has led to the development and application of various econometric models. The most popular models in modelling volatility are GARCH type models because they can account excess kurtosis and asymmetric effects of financial time series. Since standard GARCH(1, 1) model usually indicate high persistence in the conditional variance, the empirical researches turned to GJR-GARCH model and reveal its superiority in fitting the asymmetric heteroscedasticity in the data. In order to capture both asymmetry and nonlinearity in data, the goal of this paper is to develop a parsimonious NN model as an extension to GJR- GARCH model and to determine if GJR-GARCH-NN outperforms the GJR-GARCH model.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija



POVEZANOST RADA


Projekti:
HRZZ-UIP-2013-11-5199 - Mjerenje, modliranje i prognoziranje volatilnosti (Volatility) (Arnerić, Josip, HRZZ - 2013-11) ( CroRIS)

Ustanove:
Ekonomski fakultet, Split,
Ekonomski fakultet, Zagreb

Profili:

Avatar Url Tea Šestanović (autor)

Avatar Url Josip Arnerić (autor)

Poveznice na cjeloviti tekst rada:

doi airccj.org

Citiraj ovu publikaciju:

Arnerić, Josip; Poklepović, Tea
Nonlinear Extension of Asymmetric GARCH Model within Neural Network Framework // Computer Science & Information Technology (CS & IT), 6 (2016), 6; 101-111 doi:10.5121/csit.2016.60609 (međunarodna recenzija, članak, znanstveni)
Arnerić, J. & Poklepović, T. (2016) Nonlinear Extension of Asymmetric GARCH Model within Neural Network Framework. Computer Science & Information Technology (CS & IT), 6 (6), 101-111 doi:10.5121/csit.2016.60609.
@article{article, author = {Arneri\'{c}, Josip and Poklepovi\'{c}, Tea}, year = {2016}, pages = {101-111}, DOI = {10.5121/csit.2016.60609}, keywords = {conditional volatility, GARCH model, GJR model, Neural Networks, emerging markets}, journal = {Computer Science and Information Technology (CS and IT)}, doi = {10.5121/csit.2016.60609}, volume = {6}, number = {6}, issn = {2231-5403}, title = {Nonlinear Extension of Asymmetric GARCH Model within Neural Network Framework}, keyword = {conditional volatility, GARCH model, GJR model, Neural Networks, emerging markets} }
@article{article, author = {Arneri\'{c}, Josip and Poklepovi\'{c}, Tea}, year = {2016}, pages = {101-111}, DOI = {10.5121/csit.2016.60609}, keywords = {conditional volatility, GARCH model, GJR model, Neural Networks, emerging markets}, journal = {Computer Science and Information Technology (CS and IT)}, doi = {10.5121/csit.2016.60609}, volume = {6}, number = {6}, issn = {2231-5403}, title = {Nonlinear Extension of Asymmetric GARCH Model within Neural Network Framework}, keyword = {conditional volatility, GARCH model, GJR model, Neural Networks, emerging markets} }

Uključenost u ostale bibliografske baze podataka::


  • DOAJ
  • EBSCO


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font