Pregled bibliografske jedinice broj: 81468
Rounding error and perturbation bound for the symplectic QR factorization
Rounding error and perturbation bound for the symplectic QR factorization // Linear Algebra and its Applications, 358 (2003), 255-279 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 81468 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Rounding error and perturbation bound for the symplectic QR factorization
Autori
Singer, Sanja ; Singer, Saša
Izvornik
Linear Algebra and its Applications (0024-3795) 358
(2003);
255-279
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Symplectic QR factorization; Rounding error bounds; perturbation bounds
Sažetak
To compute the eigenvalues of a skew-symmetric matrix $A$, we can use a one-sided Jacobi-like algorithm to enhance accuracy. This algorithm begins by a suitable Cholesky-like factorization of $A$, $A = G^{T} J G$. In some applications, $A$ is given implicitly in that form and its natural Cholesky-like factor $G$ is immediately available, but ``tall'', i.e., not of full row rank. This factor $G$ is unsuitable for the Jacobi-like process. To avoid explicit computation of $A$, and possible loss of accuracy, the factor has to be preprocessed by a QR-like factorization. In this paper we present the symplectic QR algorithm to achieve such a factorization, together with the corresponding rounding error and perturbation bounds. These bounds fit well into the relative perturbation theory for skew-symmetric matrices given in factorized form.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0037114
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- The INSPEC Science Abstracts series
- Mathematical Reviews