Pregled bibliografske jedinice broj: 813492
Electrical stimulation of nonclassical photon emission from diamond color centers by means of sub-superficial graphitic electrodes
Electrical stimulation of nonclassical photon emission from diamond color centers by means of sub-superficial graphitic electrodes // Scientific Reports, 5 (2015), 15901-1 doi:10.1038/srep15901 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 813492 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Electrical stimulation of nonclassical photon emission from diamond color centers by means of sub-superficial graphitic electrodes
Autori
Forneris, Jacopo ; Traina, Paolo ; Gatto Monticone, Daniele ; Amato, Giempiero ; Boarino, Luca ; Brida, Giorgio ; Degiovanni, Ivo P. ; Enrico, Emanuele ; Moreva, Ekatarina ; Grilj, Veljko ; Skukan, Natko ; Jakšić, Milko ; Genovese, Marko ; Olivero, Paolo
Izvornik
Scientific Reports (2045-2322) 5
(2015);
15901-1
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
diamond ; color centers ; graphitic channels ; ion microbeam
Sažetak
Focused MeV ion beams with micrometric resolution are suitable tools for the direct writing of conductive graphitic channels buried in an insulating diamond bulk, as already demonstrated for different device applications. In this work we apply this fabrication method to the electrical excitation of color centers in diamond, demonstrating the potential of electrical stimulation in diamond-based single-photon sources. Differently from optically-stimulated light emission from color centers in diamond, electroluminescence (EL) requires a high current flowing in the diamond sub gap states between the electrodes. With this purpose, buried graphitic electrode pairs, 10 μm spaced, were fabricated in the bulk of a single-crystal diamond sample using a 6 MeV C microbeam. The electrical characterization of the structure showed a significant current injection above an effective voltage threshold of 150 V, which enabled the stimulation of a stable EL emission. The EL imaging allowed to identify the electroluminescent regions and the residual vacancy distribution associated with the fabrication technique. Measurements evidenced isolated electroluminescent spots where non-classical light emission in the 560–700 nm spectral range was observed. The spectral and autocorrelation features of the EL emission were investigated to qualify the non-classical properties of the color centers.
Izvorni jezik
Engleski
Znanstvena područja
Fizika
POVEZANOST RADA
Ustanove:
Institut "Ruđer Bošković", Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE