Pregled bibliografske jedinice broj: 81308
Subgroup discovery for actionable knowledge generation: defiences of classification rule learning and lessons learned
Subgroup discovery for actionable knowledge generation: defiences of classification rule learning and lessons learned // Prooceedings of the ICML-2002 Workshop on Data Mining Lessons Learned / Lavrač, Nada; Motoda, Hiroshi; Fawcett, Tom (ur.).
Sydney: University of New South Wales, 2002. str. 48-55 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 81308 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Subgroup discovery for actionable knowledge generation: defiences of classification rule learning and lessons learned
Autori
Lavrač, Nada ; Gamberger, Dragan ; Flach, Peter
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Prooceedings of the ICML-2002 Workshop on Data Mining Lessons Learned
/ Lavrač, Nada; Motoda, Hiroshi; Fawcett, Tom - Sydney : University of New South Wales, 2002, 48-55
Skup
ICML-2002 Workshop on Data Mining Lessons Learned
Mjesto i datum
Sydney, Australija, 08.07.2002. - 12.07.2002
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
actionable knowledge; subgroup discovery
Sažetak
This paper discusses actionable knowledge generation. Actionable knowledge is explicit symbolic knowledge, typically presented in the form of rules, that allows the decision maker to recognize some important relations and to perform an action, such as targeting a direct marketing campaign, or planning a population screening campaign aimed at detecting individuals with high disease risk. The disadvantages of using standard classification rule learning for this task are discussed, and three subgroup discovery implementations are outlined. Case studies, a medical and two marketing ones, are used to present the lessons learned in solving problems requiring actionable knowledge generation.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA