Pregled bibliografske jedinice broj: 81255
Enhancing the Efficiency of Data Mining Process by Circular Coupling of Multiple Schemes
Enhancing the Efficiency of Data Mining Process by Circular Coupling of Multiple Schemes // 2002 MIPRO, Computers in technical systems and intelligent systems / Budin, Leo ; Ribarić, Slobodan (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2002. str. 9-14 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 81255 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Enhancing the Efficiency of Data Mining Process by Circular Coupling of Multiple Schemes
Autori
Ujević, Filip ; Bogunović, Nikola
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2002 MIPRO, Computers in technical systems and intelligent systems
/ Budin, Leo ; Ribarić, Slobodan - Rijeka : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2002, 9-14
Skup
2002 MIPRO, Computers in technical systems and intelligent systems
Mjesto i datum
Opatija, Hrvatska, 20.05.2003. - 24.05.2003
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Automated reasoning; Data mining; Knowledge discovery; Probabilistic reasoning
Sažetak
A widespread proliferation of databases has created a demand for powerful tools for turning stored data into useful knowledge. The paper explicates a data classification and description environment that combines data mining procedures in a novel style, not encountered in standard architectures. The environment (implemented in Java) is primarily designed for classification and description problems that exhibit a high degree of nondeterministic behavior. The architecture utilizes SQL queries for direct database access. In the preprocessing phase, extracted data is analyzed using greedy hill-climbing based algorithm that helps in selecting the most promising attribute set. For the classification purposes a Naive Bayes classifier is used, while for the dataset description purposes a C4.5 type decision tree generator is implemented. An embedded two-dimensional visual performance evaluation tool enables rapid evaluation of the extracted knowledge. The predictive power of the described data mining environment is illustrated on a typical real-world business application.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Institut "Ruđer Bošković", Zagreb
Profili:
Nikola Bogunović
(autor)