Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 811269

Application of 2D Bisection Method for the Inverse Winkel Tripel Projection


Tutek, Željka; Lapaine, Miljenko
Application of 2D Bisection Method for the Inverse Winkel Tripel Projection // 10th Jubilee Cartography and Geoinformation International Conference, Program and Abstracts / Lapaine, Miljenko (ur.).
Zagreb: Hrvatsko kartografsko društvo, 2014. str. 41-41 (predavanje, domaća recenzija, sažetak, znanstveni)


CROSBI ID: 811269 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Application of 2D Bisection Method for the Inverse Winkel Tripel Projection

Autori
Tutek, Željka ; Lapaine, Miljenko

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
10th Jubilee Cartography and Geoinformation International Conference, Program and Abstracts / Lapaine, Miljenko - Zagreb : Hrvatsko kartografsko društvo, 2014, 41-41

Skup
10th Jubilee Cartography and Geoinformation International Conference

Mjesto i datum
Zagreb, Hrvatska, 10.10.2014. - 12.10.2014

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Domaća recenzija

Ključne riječi
inverse Winkel Tripel projection ; system of nonlinear equations ; bisection method

Sažetak
A common problem in cartography is to determine the geographic coordinates from the plane coordinates. This leads to solving system of equations. For some map projections nonlinearity and complexity of the equations does not allow analytical but only numerical solution of the inverse transformation. For the inverse Winkel Triple projection the algorithm with exact Newton’s method is well known. Although, Fortran program for it is available, the implementation of the method is a nontrivial task. The bisection method is well known for finding the root of one equation, but its generalizations to a system of equations are not as known. For the inverse Winkel Triple projection we will propose the algorithm with nested bisection method which is very simple and always converges. A priori stopping criterion ensures the achievement of a certain desired accuracy.

Izvorni jezik
Engleski



POVEZANOST RADA


Profili:

Avatar Url Miljenko Lapaine (autor)

Avatar Url Željka Tutek (autor)


Citiraj ovu publikaciju:

Tutek, Željka; Lapaine, Miljenko
Application of 2D Bisection Method for the Inverse Winkel Tripel Projection // 10th Jubilee Cartography and Geoinformation International Conference, Program and Abstracts / Lapaine, Miljenko (ur.).
Zagreb: Hrvatsko kartografsko društvo, 2014. str. 41-41 (predavanje, domaća recenzija, sažetak, znanstveni)
Tutek, Ž. & Lapaine, M. (2014) Application of 2D Bisection Method for the Inverse Winkel Tripel Projection. U: Lapaine, M. (ur.)10th Jubilee Cartography and Geoinformation International Conference, Program and Abstracts.
@article{article, author = {Tutek, \v{Z}eljka and Lapaine, Miljenko}, editor = {Lapaine, M.}, year = {2014}, pages = {41-41}, keywords = {inverse Winkel Tripel projection, system of nonlinear equations, bisection method}, title = {Application of 2D Bisection Method for the Inverse Winkel Tripel Projection}, keyword = {inverse Winkel Tripel projection, system of nonlinear equations, bisection method}, publisher = {Hrvatsko kartografsko dru\v{s}tvo}, publisherplace = {Zagreb, Hrvatska} }
@article{article, author = {Tutek, \v{Z}eljka and Lapaine, Miljenko}, editor = {Lapaine, M.}, year = {2014}, pages = {41-41}, keywords = {inverse Winkel Tripel projection, system of nonlinear equations, bisection method}, title = {Application of 2D Bisection Method for the Inverse Winkel Tripel Projection}, keyword = {inverse Winkel Tripel projection, system of nonlinear equations, bisection method}, publisher = {Hrvatsko kartografsko dru\v{s}tvo}, publisherplace = {Zagreb, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font