Pregled bibliografske jedinice broj: 809582
Detection of Exudates in Fundus Photographs using Convolutional Neural Networks
Detection of Exudates in Fundus Photographs using Convolutional Neural Networks // ISPA 2015 (9th International Symposium on Image and Signal Processing and Analysis)
Zagreb, 2015. str. 188-192 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 809582 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Detection of Exudates in Fundus Photographs using Convolutional Neural Networks
Autori
Prentašić, Pavle ; Lončarić, Sven
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
ISPA 2015 (9th International Symposium on Image and Signal Processing and Analysis)
/ - Zagreb, 2015, 188-192
Skup
9th International Symposium on Image and Signal Processing and Analysis
Mjesto i datum
Zagreb, Hrvatska, 07.09.2015. - 09.09.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
diabetic retinopathy; machine learning; deep learning; convolutional neural networks; image analysis
Sažetak
Diabetic retinopathy is one of the leading causes of preventable blindness in the developed world. Early diagnosis of diabetic retinopathy enables timely treatment and in order to achieve it a major effort will have to be invested into screening programs and especially into automated screening programs. Detection of exudates is very important for early diagnosis of diabetic retinopathy. Deep neural networks have proven to be a very promising machine learning technique, and have shown excellent results in different compute vision problems. In this paper we show that convolutional neural networks can be effectively used in order to detect exudates in color fundus photographs.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb