Pregled bibliografske jedinice broj: 809417
On the cohomology of linear groups over imaginary quadratic fields
On the cohomology of linear groups over imaginary quadratic fields // Journal of pure and applied algebra, 220 (2016), 7; 2564-2589 doi:10.1016/j.jpaa.2015.12.002 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 809417 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the cohomology of linear groups over imaginary quadratic fields
Autori
Dutour Sikirić, Mathieu ; Gangl, Herbert ; Gunnells, Paul ; Hanke, Jonathan ; Schuermann, Achill ; Yasaki, Dan
Izvornik
Journal of pure and applied algebra (0022-4049) 220
(2016), 7;
2564-2589
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Cohomology ; Perfect form
Sažetak
Let Γ be the group GLN(OD), where OD is the ring of integers in the imaginary quadratic field with discriminant D<0. In this paper we investigate the cohomology of Γ for N=3, 4 and for a selection of discriminants: D≥−24 when N=3, and D=−3, −4 when N=4. In particular we compute the integral cohomology of Γ up to p- power torsion for small primes p. Our main tool is the polyhedral reduction theory for Γ developed by Ash [4, Ch. II] and Koecher [24]. Our results extend work of Staffeldt [40], who treated the case N=3, D=−4. In a sequel [15] to this paper, we will apply some of these results to computations with the K -groups K4(OD), when D=−3, −4.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet