Pregled bibliografske jedinice broj: 808453
Fractal properties of Bessel functions
Fractal properties of Bessel functions // Applied mathematics and computation, 283 (2016), 55-69 doi:10.1016/j.amc.2016.02.025 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 808453 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Fractal properties of Bessel functions
Autori
Korkut, Luka ; Vlah, Domagoj ; Županović, Vesna
Izvornik
Applied mathematics and computation (0096-3003) 283
(2016);
55-69
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
wavy spiral ; Bessel equation ; generalized Bessel equation ; box dimension ; phase dimension
Sažetak
A fractal oscillatority of solutions of second- order differential equations near infinity is measured by oscillatory and phase dimensions. The phase dimension is defined as a box dimension of the trajectory $(x, \dot{; ; x}; ; )$ in $\mathbb{; ; R}; ; ^2$ of a solution $x=x(t)$, assuming that $(x, \dot{; ; x}; ; )$ is a spiral converging to the origin. In this work, we study the phase dimension of the class of second-order nonautonomous differential equations with oscillatory solutions including the Bessel equation. We prove that the phase dimension of Bessel functions is equal to $4/3$, for each order of the Bessel function. A trajectory is a wavy spiral, exhibiting an interesting oscillatory behavior. The phase dimension of a generalization of the Bessel equation has been also computed.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus