Pregled bibliografske jedinice broj: 804071
Characteristic length of sequences via one-scale H-measures
Characteristic length of sequences via one-scale H-measures // Mathematical Challenges in Quantum Mechanics: Programme&Abstracts / Cacciapuoti, Claudio ; Cardin, Franco ; Carlone, Raffaele ; Coreggi, Michele ; Michelangeli, Alessandro ; Teta, Alessandro (ur.).
Brixen, 2016. str. 20-20 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 804071 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Characteristic length of sequences via one-scale H-measures
Autori
Antonić, Nenad ; Erceg, Marko ; Lazar, Martin
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Mathematical Challenges in Quantum Mechanics: Programme&Abstracts
/ Cacciapuoti, Claudio ; Cardin, Franco ; Carlone, Raffaele ; Coreggi, Michele ; Michelangeli, Alessandro ; Teta, Alessandro - Brixen, 2016, 20-20
Skup
Mathematical Challenges in Quantum Mechanics
Mjesto i datum
Bressanone, Italija, 08.02.2016. - 13.02.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
oscillations ; semiclassical ; one-scale H-measures ; compensated compactness
Sažetak
By Vitali's theorem, the lack of strong convergence of L^2 bounded sequences is caused by oscillations and/or concentration effects, which motivates the study of these effects. Although the direction of oscillations and the point of concentrations can be detected using H-measures (also called microlocal defect measures), sometimes this is not satisfactory since we are also interested in the scale of this phenomena (e.q. frequency of oscillations). We introduce (\omega_n)-concentrating property which, together with the known (\omega_n)-oscillating property, can give a full picture of the scale of observed sequences. These conditions also illustrate when H-measures and semiclassical measures (also called Wigner measures) coincide. Furthermore, we would like to present a more recent variant of microlocal defect funcionals, one-scale H-measures, which were introduced as a generalisation of H-measures with a characteristic length, being also an extension of semiclassical measures. Using the framework of one-scale H-measures, we develop a variant of compensated compactness suitable for partial differential equations with a characteristic length.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-9780 - Metode slabih convergencija i primjene (WeConMApp) (Antonić, Nenad, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb,
Sveučilište u Dubrovniku