Pregled bibliografske jedinice broj: 802590
The Feynman integral in $\mathbb R^1 \oplus \mathbb R^m$ and complex expansion of $_2F_1$
The Feynman integral in $\mathbb R^1 \oplus \mathbb R^m$ and complex expansion of $_2F_1$ // Integral transforms and special functions, 27 (2016), 7; 533-547 doi:10.1080/10652469.2016.1159560 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 802590 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The Feynman integral in $\mathbb R^1 \oplus \mathbb R^m$ and complex expansion of $_2F_1$
Autori
Shpot, Mykola ; Poganj, Tibor
Izvornik
Integral transforms and special functions (1065-2469) 27
(2016), 7;
533-547
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Feynman integral ; Gauss hypergeometric function ; Generalized hypergeometric function ; Appell functions ; Horn functions ; Hypergeometric transformation formulae
Sažetak
Closed form expressions are proposed for a Feynman integral over $d=D+m$ dimensional space with $(\bm x, \bm y), \, (\bm p, \bm q) \in \mathbb R^D \oplus \mathbb R^m$, in the special case $D=1$. We show that $I_{; ; ; ; 1, m}; ; ; ; (p, q)$ can be expressed in different forms involving real and imaginary parts of the complex variable Gauss hypergeometric function $_2F_1$, as well as generalized hypergeometric $_2F_2$ and $_3F_2$, Horn $H_4$ and Appell $F_2$ functions. Several interesting relations are derived between the real and imaginary parts of $_2F_1$ and the function $H_4$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-5435 - Nejednakosti i primjene (INEQUALITIES) (Pečarić, Josip) ( CroRIS)
Ustanove:
Pomorski fakultet, Rijeka
Profili:
Tibor Poganj
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts