Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 802590

The Feynman integral in $\mathbb R^1 \oplus \mathbb R^m$ and complex expansion of $_2F_1$


Shpot, Mykola; Poganj, Tibor
The Feynman integral in $\mathbb R^1 \oplus \mathbb R^m$ and complex expansion of $_2F_1$ // Integral transforms and special functions, 27 (2016), 7; 533-547 doi:10.1080/10652469.2016.1159560 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 802590 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
The Feynman integral in $\mathbb R^1 \oplus \mathbb R^m$ and complex expansion of $_2F_1$

Autori
Shpot, Mykola ; Poganj, Tibor

Izvornik
Integral transforms and special functions (1065-2469) 27 (2016), 7; 533-547

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Feynman integral ; Gauss hypergeometric function ; Generalized hypergeometric function ; Appell functions ; Horn functions ; Hypergeometric transformation formulae

Sažetak
Closed form expressions are proposed for a Feynman integral over $d=D+m$ dimensional space with $(\bm x, \bm y), \, (\bm p, \bm q) \in \mathbb R^D \oplus \mathbb R^m$, in the special case $D=1$. We show that $I_{; ; ; ; 1, m}; ; ; ; (p, q)$ can be expressed in different forms involving real and imaginary parts of the complex variable Gauss hypergeometric function $_2F_1$, as well as generalized hypergeometric $_2F_2$ and $_3F_2$, Horn $H_4$ and Appell $F_2$ functions. Several interesting relations are derived between the real and imaginary parts of $_2F_1$ and the function $H_4$.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2013-11-5435 - Nejednakosti i primjene (INEQUALITIES) (Pečarić, Josip) ( CroRIS)

Ustanove:
Pomorski fakultet, Rijeka

Profili:

Avatar Url Tibor Poganj (autor)

Poveznice na cjeloviti tekst rada:

doi www.tandfonline.com

Citiraj ovu publikaciju:

Shpot, Mykola; Poganj, Tibor
The Feynman integral in $\mathbb R^1 \oplus \mathbb R^m$ and complex expansion of $_2F_1$ // Integral transforms and special functions, 27 (2016), 7; 533-547 doi:10.1080/10652469.2016.1159560 (međunarodna recenzija, članak, znanstveni)
Shpot, M. & Poganj, T. (2016) The Feynman integral in $\mathbb R^1 \oplus \mathbb R^m$ and complex expansion of $_2F_1$. Integral transforms and special functions, 27 (7), 533-547 doi:10.1080/10652469.2016.1159560.
@article{article, author = {Shpot, Mykola and Poganj, Tibor}, year = {2016}, pages = {533-547}, DOI = {10.1080/10652469.2016.1159560}, keywords = {Feynman integral, Gauss hypergeometric function, Generalized hypergeometric function, Appell functions, Horn functions, Hypergeometric transformation formulae}, journal = {Integral transforms and special functions}, doi = {10.1080/10652469.2016.1159560}, volume = {27}, number = {7}, issn = {1065-2469}, title = {The Feynman integral in $\mathbb R\^{}1 \oplus \mathbb R\^{}m$ and complex expansion of $\_2F\_1$}, keyword = {Feynman integral, Gauss hypergeometric function, Generalized hypergeometric function, Appell functions, Horn functions, Hypergeometric transformation formulae} }
@article{article, author = {Shpot, Mykola and Poganj, Tibor}, year = {2016}, pages = {533-547}, DOI = {10.1080/10652469.2016.1159560}, keywords = {Feynman integral, Gauss hypergeometric function, Generalized hypergeometric function, Appell functions, Horn functions, Hypergeometric transformation formulae}, journal = {Integral transforms and special functions}, doi = {10.1080/10652469.2016.1159560}, volume = {27}, number = {7}, issn = {1065-2469}, title = {The Feynman integral in $\mathbb R\^{}1 \oplus \mathbb R\^{}m$ and complex expansion of $\_2F\_1$}, keyword = {Feynman integral, Gauss hypergeometric function, Generalized hypergeometric function, Appell functions, Horn functions, Hypergeometric transformation formulae} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font