Pregled bibliografske jedinice broj: 801773
There are infinitely many rational Diophantine sextuples
There are infinitely many rational Diophantine sextuples // Computational Aspects of Diophantine Equations
Salzburg: University of Salzburg, 2016. str. 14-14 (pozvano predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 801773 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
There are infinitely many rational Diophantine
sextuples
Autori
Dujella, Andrej ; Kazalicki, Matija ; Mikić, Miljen ; Szikszai, Marton
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Computational Aspects of Diophantine Equations
/ - Salzburg : University of Salzburg, 2016, 14-14
Skup
Computational Aspects of Diophantine Equations
Mjesto i datum
Salzburg, Austrija, 15.02.2016. - 19.02.2016
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
rational Diophantine sextuples ; elliptic curves
Sažetak
A rational Diophantine m-tuple is a set of m nonzero rationals such that the product of any two of them increased by 1 is a perfect square. The first rational Diophantine quadruple was found by Diophantus, while Euler proved that there are infinitely many rational Diophantine quintuples. In 1999, Gibbs found the first example of a rational Diophantine sextuple. In this talk, we describe construction of infinitely many rational Diophantine sextuples. This is joint work with Matija Kazalicki, Miljen Mikić and Márton Szikszai.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-6422 - Diofantove m-torke, eliptičke krivulje, Thueove i indeksne jednadžbe (DIOPHANTINE) (Dujella, Andrej, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb