Pregled bibliografske jedinice broj: 801715
Multiscale unique continuation properties of eigenfunctions
Multiscale unique continuation properties of eigenfunctions // Operator semigroups meet complex analysis, harmonic analysis and mathematical physics / Arendt, Wolfgang ; Chill, Ralph ; Tomilov, Yuri (ur.).
Basel: Springer, 2015. str. 107-118 doi:10.1007/978-3-319-18494-4_7
CROSBI ID: 801715 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Multiscale unique continuation properties of eigenfunctions
Autori
Borisov, Denis ; Nakić, Ivica ; Rose, Christian ; Tautenhahn, Martin ; Veselić, Ivan
Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni
Knjiga
Operator semigroups meet complex analysis, harmonic analysis and mathematical physics
Urednik/ci
Arendt, Wolfgang ; Chill, Ralph ; Tomilov, Yuri
Izdavač
Springer
Grad
Basel
Godina
2015
Raspon stranica
107-118
ISBN
978-3-319-18493-7
Ključne riječi
scale free unique continuation property, equidistribution property, observability estimate, uncertainty relation, Carleman estimate, Schrödinger operator, elliptic differential equation.
Sažetak
Quantitative unique continuation principles for multiscale structures are an important ingredient in a number applications, e.g. random Schrodinger operators and control theory. We review recent results and announce new ones regarding quantitative unique continuation principles for partial differential equations with an underlying multiscale structure. They concern Schrödinger and second order elliptic operators. An important feature is that the estimates are scale free and with quantitative dependence on parameters. These unique continuation principles apply to functions satisfying certain ‘rigidity’ conditions, namely that they are solutions of the corresponding elliptic equations, or projections on spectral subspaces. Carleman estimates play an important role in the proofs of these results.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ #9345
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Ivica Nakić
(autor)