Pregled bibliografske jedinice broj: 799969
Mining Association Rules in Learning Management Systems
Mining Association Rules in Learning Management Systems // Proceedings of the 38th International convention on information and communication technology, electronics and microelectronics, MIPRO, CE - COMPUTERS IN EDUCATION / Petar Biljanović (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2015. str. 1087-1092 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 799969 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Mining Association Rules in Learning Management
Systems
Autori
Perušić Hrženjak, Maja ; Matetić, Maja ; Brkić Bakarić, Marija
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 38th International convention on information and communication technology, electronics and microelectronics, MIPRO, CE - COMPUTERS IN EDUCATION
/ Petar Biljanović - Rijeka : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2015, 1087-1092
ISBN
978-953-233-083-0
Skup
38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)
Mjesto i datum
Opatija, Hrvatska, 25.05.2015. - 29.05.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
educational data mining ; association rules ; learning management systems
Sažetak
Learning management systems collect huge amounts of data that can later be analysed. The University of Rijeka uses MudRi e-learning system, which is based on the Moodle open source software. This paper focuses on the Programming course, for which data over several years are available. The data can be interpreted and valuable knowledge can be obtained and used for improving the quality of lectures, as well as making the lectures more suitable for students based on the actions and material deemed the most popular. Since the MudRi database contains many facts that might affect each other (e.g. homework might affect the final grade), association rule mining, which discovers regularities in data, is the most suitable data mining method. Apriori algorithm for the discovery of association rules is used for finding connections between various actions and final grades. Many interesting rules and information are discovered, which lead to conclusions on actions that seem to be in relation with the course success.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Conference Proceedings Citation Index - Science (CPCI-S)
- Scopus