Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 799969

Mining Association Rules in Learning Management Systems


Perušić Hrženjak, Maja; Matetić, Maja; Brkić Bakarić, Marija
Mining Association Rules in Learning Management Systems // Proceedings of the 38th International convention on information and communication technology, electronics and microelectronics, MIPRO, CE - COMPUTERS IN EDUCATION / Petar Biljanović (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2015. str. 1087-1092 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 799969 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Mining Association Rules in Learning Management Systems

Autori
Perušić Hrženjak, Maja ; Matetić, Maja ; Brkić Bakarić, Marija

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 38th International convention on information and communication technology, electronics and microelectronics, MIPRO, CE - COMPUTERS IN EDUCATION / Petar Biljanović - Rijeka : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2015, 1087-1092

ISBN
978-953-233-083-0

Skup
38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)

Mjesto i datum
Opatija, Hrvatska, 25.05.2015. - 29.05.2015

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
educational data mining ; association rules ; learning management systems

Sažetak
Learning management systems collect huge amounts of data that can later be analysed. The University of Rijeka uses MudRi e-learning system, which is based on the Moodle open source software. This paper focuses on the Programming course, for which data over several years are available. The data can be interpreted and valuable knowledge can be obtained and used for improving the quality of lectures, as well as making the lectures more suitable for students based on the actions and material deemed the most popular. Since the MudRi database contains many facts that might affect each other (e.g. homework might affect the final grade), association rule mining, which discovers regularities in data, is the most suitable data mining method. Apriori algorithm for the discovery of association rules is used for finding connections between various actions and final grades. Many interesting rules and information are discovered, which lead to conclusions on actions that seem to be in relation with the course success.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka

Poveznice na cjeloviti tekst rada:

ieeexplore.ieee.org ieeexplore.ieee.org

Citiraj ovu publikaciju:

Perušić Hrženjak, Maja; Matetić, Maja; Brkić Bakarić, Marija
Mining Association Rules in Learning Management Systems // Proceedings of the 38th International convention on information and communication technology, electronics and microelectronics, MIPRO, CE - COMPUTERS IN EDUCATION / Petar Biljanović (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2015. str. 1087-1092 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Perušić Hrženjak, M., Matetić, M. & Brkić Bakarić, M. (2015) Mining Association Rules in Learning Management Systems. U: Petar Biljanović (ur.)Proceedings of the 38th International convention on information and communication technology, electronics and microelectronics, MIPRO, CE - COMPUTERS IN EDUCATION.
@article{article, author = {Peru\v{s}i\'{c} Hr\v{z}enjak, Maja and Mateti\'{c}, Maja and Brki\'{c} Bakari\'{c}, Marija}, year = {2015}, pages = {1087-1092}, keywords = {educational data mining, association rules, learning management systems}, isbn = {978-953-233-083-0}, title = {Mining Association Rules in Learning Management Systems}, keyword = {educational data mining, association rules, learning management systems}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {Peru\v{s}i\'{c} Hr\v{z}enjak, Maja and Mateti\'{c}, Maja and Brki\'{c} Bakari\'{c}, Marija}, year = {2015}, pages = {1087-1092}, keywords = {educational data mining, association rules, learning management systems}, isbn = {978-953-233-083-0}, title = {Mining Association Rules in Learning Management Systems}, keyword = {educational data mining, association rules, learning management systems}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Conference Proceedings Citation Index - Science (CPCI-S)
  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font