Pregled bibliografske jedinice broj: 799958
Text mining student reports
Text mining student reports // CompSysTech '15: Proceedings of the 16th International Conference on Computer Systems and Technologies / Rachev, Boris ; Smrikarov, Angel (ur.).
Dublin: Association for Computing Machinery (ACM), 2015. str. 382-389 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 799958 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Text mining student reports
Autori
Brkić Bakarić, Marija ; Matetić, Maja ; Šišović, Sabina
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
CompSysTech '15: Proceedings of the 16th International Conference on Computer Systems and Technologies
/ Rachev, Boris ; Smrikarov, Angel - Dublin : Association for Computing Machinery (ACM), 2015, 382-389
ISBN
978-1-4503-3357-3
Skup
CompSysTech '15, 16th International Conference on Computer Systems and Technologies
Mjesto i datum
Dublin, Irska, 25.06.2015. - 26.06.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
contrastive analysis ; predictive power ; classification ; text mining ; word frequency
Sažetak
This paper is a preliminary attempt at gaining useful knowledge from student reports, but also at inspecting their predictive power on grades or course success rate. First a descriptive statistical analysis is done in order to get a basic understanding of patterns found in reports. Then a frequency word analysis and contrastive analysis are done in order to identify the most frequent words per class and those words that occur distinctively between different classes. Prior to the classification task, correlations between the length of the final report and the final grade, and between the scores obtained on each reported activity individually and the final grade are inspected. Finally, four different classifiers are evaluated on the task of classifying texts based on the type. The same four classifiers are used to determine the predictive power that reports have on course final grades.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus