Pregled bibliografske jedinice broj: 796363
A quantitative version of Herstein's theorem for Jordan *-isomorphisms
A quantitative version of Herstein's theorem for Jordan *-isomorphisms // Linear and multilinear algebra, 64 (2016), 2; 156-168 doi:10.1080/03081087.2015.1028169 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 796363 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A quantitative version of Herstein's theorem for Jordan *-isomorphisms
Autori
Ilišević, Dijana ; Turnšek, Aleksej
Izvornik
Linear and multilinear algebra (0308-1087) 64
(2016), 2;
156-168
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
stability ; Jordan *-isomorphism ; C*-algebra
Sažetak
We study linear mappings between C*-algebras A and B, which approximately satisfy Jordan multiplicativity condition and a *-preserving condition (that is, the so-called \epsilon-approximate Jordan *-homomorphisms). We first prove that every such a mapping is automatically continuous and we give the estimates of its norm, as well as the estimates of the norm of its inverse if it is bijective. If K(H_1) \subseteq A \subseteq B(H_1), K(H_2) \subseteq B \subseteq B(H_2), and \psi : A \to B is a bijective \epsilon-approximate Jordan *-homomorphism with sufficiently small \epsilon > 0, then either \psi^{; ; ; -1}; ; ; has a large norm, or \psi is close to a Jordan *-isomorphism, that is, to a mapping of the form X \mapsto UXU*, or X \mapsto UX^tU*, for some unitary U \in B(H_1, H_2). We also give the corresponding quantitative estimate.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Dijana Ilišević
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts